The AMAP Marine Thematic Data Centre holds marine contaminants data for monitoring and assessment. The database is hosted by the International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark, and are accessible through their online EcoSystemData warehouse.
AMAP Thematic Data Centres compile data from relevant monitoring and research activities and make them available under strict conditions that protect the rights of data originators. AMAP TDCs are located at established centres with appropriate expertise and facilities for conducting the types of international data handling required. For more information, please visit the main AMAP website.
Below are projects that have specified Marine TDC as one of the data repositories for the AMAP Project Directory. To see the full list of AMAP Thematic Data Centres, see the AMAP TDC list.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
Det danske bidrag til Arctic Monitoring and Assessment Programme (AMAP) under Arktisk Råd har dokumenteret at østgrønlandske isbjørne er mest forurenede mht. fedtopløselige organiske miljøgifte. Siden 1999 har Danmarks Miljøundersøgelsers Afdeling for Arktisk Miljø (DMU-AM) undersøgt isbjørnesundheden i Østgrønland via et unikt samarbejde med lokale bjørnefangere, og et tværfagligt samarbejde med biologisk, veterinær og human medicinske fagområder i Grønland og Danmark samt internationale samarbejdsrelationer med Canada, Norge og Tyskland. Undersøgelserne er mundet ud i en lang række af række internationale videnskabelige publikationer som dokumenterer tidstrend i miljøbelastningen af de grønlandske og norske isbjørne og sammenhængen mellem forurening og helbredseffekter på isbjørne. Disse har fået omtalt presseomtale verden over.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.
The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.
Oil pollution and oil biodegradation in the inner part of Kandalaksha Bay and adjacent areas.
Brief: Assessment of the significance of aquatic food chains as a pathways of exposure of indigenous peoples to PTS, assessment of the relative importance of local and distant sources, and the role of atmospheric and riverine transport of PTS in Northern Russia. Project rationale and objectives: (1) To assess levels of Persistent Toxic Substances (PTS) in the environment in selected areas of the Russian North, their biomagnification in aquatic and terrestrial food chains, and contamination of traditional (country) foods that are important components of the diet of indigenous peoples. (2) To assess exposure of indigenous peoples in the Russian North to PTS, and the human health impacts of pollution from local and remote sources, as a basis for actions to reduce the risks associated with these exposures. (3) To inform indigenous peoples about contamination by PTS of their environment and traditional food sources, and empower them to take appropriate remedial actions to reduce health risks. (4) To enhance the position of the Russian Federation in international negotiations to reduce the use of PTS, and to empower the Russian Association of Indigenous Peoples of the North (RAIPON) to participate actively and fully in these negotiations. Project activities to achieve outcomes: (1) Inventory of local pollution sources in the vicinities of selected indigenous communities. (2) Survey of levels and fluxes of PTS in riverine and coastal marine environment important for indigenous peoples living in these environments and using them for their subsistence; and assessment of fluxes of PTS to these environments via selected rivers and the atmosphere. (3) Dietary surveys of selected indigenous communities. (4) Study of biomagnification, based on measurements of selected PTS in representative species in food chains important for the traditional diet of indigenous populations. (5) Survey and comparative assessment of pollution levels of the indigenous and general population in selected areas. (6) Dissemination of results to all relevant stakeholders.
White whale (Delphinapterus leucas) blubber samples from three of the five different Alaskan stocks - Cook Inlet (n = 20), Eastern Chukchi Sea (n = 19) and Eastern Beaufort Sea (n = 2) - were analyzed for levels and patterns of chemical contaminants. Blubber of these whales contained sum PCBs, sum DDTs, sum chlordanes, HCB, dieldrin, mirex, *toxaphene and *HCH, generally in concentration ranges similar to those found in white whales from the Canadian Arctic and lower than those in white whales from the highly contaminated St. Lawrence River. The males of the Cook Inlet and Eastern Chukchi Sea stocks had higher mean concentrations of all contaminant groups than did the females of the same stock, a result attributable to the transfer of these organochlorine contaminants (OCs) from the mother to the calf during pregnancy and during lactation following birth. Principal components analysis of patterns of contaminants present in blubber showed that Cook Inlet stock appeared to have identifiable contaminant patterns that allowed the stock to be distinguished from the others. Our results also showed that blubber from the three Alaskan stocks was a source of contaminant exposure for human subsistence consumers, but the health risks from consumption are currently unknown.
Blubber samples from Alaska ringed seal (Phoca hispida) were collected for inclusion in the US National Biomonitoring Specimen Bank, as well as for immediate analysis as part of the contaminant monitoring component of the US National Marine Fisheries Service's Marine Mammal Health and Stranding Response Program. The blubber samples were analyzed for organochlorine (OC) contaminants (e.g., PCB congeners, pesticides, DDTs). Results for ringed seals from the Alaska Arctic revealed low blubber concentrations of OC contaminants. Differences in contaminant concentrations among the Alaska seals may be explained by differences in feeding habits and migratory patterns; age or gender did not appear to account for the differences observed. The integration of real-time contaminant monitoring with specimen banking provides important baseline data that can be used to plan and manage banking activities. This includes identifying appropriate specimens that are useful in assessing temporal trends and increasing the utility of the banked samples in assessing chemical contaminant accumulation and relationships to biological effects.
Objectives were to measure a suite of organochlorine contaminants in tissues of Arctic fox collected on the Pribilof Islands for comparison to similar measurements in Arctic fox from other locations for the AMAP assessment.
I. Objectives: I.1. To determine the normal range of values (natural variability due to time of year, age, gender) for basic nutritional and health parameters (blubber characteristics, essential and non-essential elements, structure of basic tissues) in the bowhead whale. a. Blubber thickness (depth and girth), chemical composition (lipids, water, calories), and tissue structure (light microscopy and special stains) will be assessed. b. Essential and non-essential elements (heavy metals) will be measured in liver and kidney. c. Tissue structure (light microscopy) characteristics obviously related to nutritional status in liver (glycogen, lipid and lipofuscin stores), pancreas (zymogen granules), and intestine (mucosal microvilli) and any evidence of inactivity/atrophy will be examined. d. Documentation of "normal" structure of basic tissues and evaluation for evidence of disease will also be conducted. I.2. Using data from Objective 1 to identify the parameters most important in assaying the health status of other mysticetes residing in the Bering Sea or Western Arctic that are harvested or stranded. I.3. Using data from Objective 1 to help determine the role of the bowhead whale as an indicator of ecosystem health and development of an optimized protocol for assessing mysticete health for the Bering Sea and Western Arctic, and other regions.
1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).
The first part of the present study evaluated tissue concentrations of twelve essential and non-essential elements in four arctic marine mammal species important as subsistence resources to indigenous Alaskans. Species sampled included: bowhead whales, beluga whales, ringed seals, and polar bears. Concentrations of As, Cd, Co, Cu, Pb, Mg, Mn, Hg, Mo, Se, Ag, and Zn, were analyzed in liver, kidney, muscle, blubber, and epidermis (the latter in cetaceans only). Elements that were identified as having tissue concentrations, which in domesticated species would have been considered higher than normal and/or even toxic, were Cd, Hg, Ag, and Se. However, the concentrations of these elements were consistent with previous reports for arctic marine mammals. Remaining elements were at concentrations within normal ranges for domesticated species, although Cu was found frequently at concentrations that would be considered marginal or deficient in terrestrial domesticated animals. Across-species comparisons revealed that Cd was highest in kidney, followed by liver in all four species. Its concentrations were frequently correlated with Cu, Zn, Hg, and Se. Cadmium accumulated with age in bowhead and beluga whales, especially in liver and kidney. The relationships between Cd and Hg, and between Cd and Se were believed to be due to mutual accretion with age, although direct interactions could not be ruled out, especially with respect to Cd and Se. Associations between Cd and Cu, and Cd and Zn were potentially attributable to mutual binding with the inducible protein, metallothionein. This assumption was supported by the observation that Cd:Zn ratios in liver and kidney displayed a significant linear relationship to age and that this ratio either increased slightly (in kidney and liver of bowheads) or remained constant (in kidney and liver of belugas) with age. In general, Se was highest in liver and kidney of all four species, where it was frequently at concentrations that would have been deemed elevated or toxic for domesticated species, although within ranges previously reported for arctic marine mammals. Selenium increased with age indices, and was highly correlated with Hg, and often with Cd as well. Mercury also increased with age, and liver contained the highest tissue concentration in the cetacean and pinniped species. The pattern of Se accumulation in polar bears differed, with highest concentrations found in kidney, which suggested that this tissue may be the primary site for Hg detoxification in this species, as is the case for terrestrial mammals. Compared to the other three species, bowhead whales had very low Hg concentrations in all tissues. The highly significant linear relationship between Hg and Se noted in various tissues (particularly liver) of all four species was presumed due to binding of these two elements to each other following demethylation of MHg. This assumption was supported by the observations that while Se and Hg both accumulated with age, the fraction of total Hg that was composed of MHg decreased with age. The quantity that represented the difference between total Hg measured directly and calculated total Hg [i.e., SHg = Hg(II) + MHg], also increased with age in beluga liver. This connoted that a portion of the total Hg present was in an organic form other than MHg, and that this form accumulated with age. Alternatively, this portion, which was apparently not measured by either the Hg(II) or MHg procedures, may have been lost during extraction. Species in this study had mean hepatic Hg:Se molar ratios that were below unity. This implies that Hg concentrations may have been below some threshold level, after which subsequent accumulation proceeds in a 1:1 molar ratio fashion with Se. Alternatively, it might suggest that a 1:1 Hg:Se molar ratio is not a prerequisite for protection from Hg toxcosis among marine mammals, because none of the animals in the present study exhibited lesions typically associated with Hg toxicosis. In beluga liver, concentrations of Ag were elevated when compared to domesticated species. The only element that showed a significant linear association to Ag was Cu—a relationship that was observed in all four species. This suggested that Ag and Cu may be associated through a common ligand, possibly metallothionein. The association between Ag and Se in beluga liver was less strong than that between Hg and Se; moreover, Ag did not increase with age. These findings indicate that Ag probably does not compete with Hg for Se binding, and therefore is unlikely to substantially inhibit detoxification of Hg in beluga whales. In the second portion of this research, tissues from bowhead whales, beluga whales and ringed seals were examined at both the gross and light microscopic level. The purpose of this evaluation was three-fold: to describe the normal histologic appearance of tissues; to perform a routine histologic survey of tissues that would contribute to a general health assessment, and; to scrutinize tissues for lesions that might support a diagnosis of toxicosis caused by Cd, Hg, Ag, or Se. Tissues examined were chosen on the basis of their propensity to be targets for toxicologic injury from the specified elements (with the exception of brain) and included, but were not limited to, the tissues analyzed chemically. Special stains were used to identify particular pigments or tissue components. Overall, the bowhead whales evaluated appeared healthy and had low parasite burdens. The most common lesion, which was observed in all bowheads, was a non-inflammatory chronic renal periglomerular and interstitial fibrosis. This lesion was not typical of Cd-induced nephropathy, and it did not appear to be associated with renal Cd burdens. Nevertheless, thresholds of Cd-induced renal injury are not known for cetacean species, and more whales need to be examined histologically in conjunction with analysis of tissue Cd residues. Acute myodegeneration was observed in cardiac and/or skeletal muscle of a few bowheads, and was presumed to reflect a hunting-induced exertional myopathy. The beluga whales examined were generally in good body condition and appeared healthy grossly, but they had much higher parasite burdens than bowhead whales. In particular, prevalence in belugas of pulmonary nematodiasis was high, being especially common among whales obtained from Pt. Hope compared to those from Pt. Lay. Grossly, firm, caseous nodules were associated with lungworms, while histologically, the associated pulmonary changes ranged from mild chronic inflammation and focal granuloma formation to catarrhal granulomatous and eosinophilic verminous bronchopneumonia. Another change observed in some belugas and believed to be associated with lungworm infection, was multifocal pulmonary arterial medial hypertrophy and degeneration. Beluga whales harvested at Pt. Lay (summer) frequently showed evidence of hepatic and pancreatic atrophy, while whales taken at Pt. Hope (spring) did not. This was believed to result from anorexia during migration—a supposition corroborated by the lack of stomach contents among Pt. Lay whales. Another prominent histologic finding among belugas was hepatic telangectasia, which occurred with significantly greater frequency and severity in Pt. Hope belugas than in those from Pt. Lay. The etiology and significance of this lesion could be not be ascertained, although it was not believed to be associated with any of the elements analyzed in this study. Mild thickening of Bowman’s capsule was seen frequently in belugas. However, this lesion was not typical of Hg or Cd-induced nephropathies, and did not appear correlated with kidney concentrations of these metals. This lesion was believed to be a normal consequence of aging in belugas, although a metal etiology for it could not be excluded irrefutably. In general, ringed seals were in good body condition and appeared healthy on gross examination. Among seals evaluated histologically, the most common finding was a mild, chronic, focal or periportal hepatitis, with focal hepatocellular necrosis sometimes apparent. Although a metal etiology for this lesion could not be definitively ruled out, in the absence of other lesions that would support a diagnosis of metal toxicosis, an infectious etiology was considered more credible. Two out of sixteen seals had embryologic remnants (an epidermoid cyst and an ultimobranchial cyst)—lesions that are usually considered incidental. While no toxic (metal or otherwise) etiology could be ascertained for these lesions, the incidence of retained embryologic remnants seemed high. A number of xenobiotics are known to be endocrine-disruptors, and the potential for such an etiology among these seals should be examined further. Lipofuscin deposition was ubiquitous among all three species examined histologically. Lipofuscin was most prevalent in hepatocytes, but also commonly was observed in various other tissue and cell types, especially in cardiac and skeletal myocytes, and in uriniferous tubular epithelial cells. The third portion of this study employed autometallographic (AMG) development of light microscopic tissue sections to amplify and localize deposition of inorganic Hg in liver and kidney of beluga and bowhead whales. No staining occurred among bowhead tissues, confirming the extremely low concentration of Hg determined through chemical analyses. In beluga kidney sections, AMG granules were seen throughout the uriniferous tubular epithelium, showing that Hg deposits throughout the nephric tubule, and not solely in the proximal tubular epithelium. In liver tissue, AMG granules were deposited primarily in periportal regions among whales with lower hepatic Hg burdens. In addition to periportal deposition, AMG granules were observed in pericentral and mid-zonal regions in the belugas sampled that had higher liver Hg concentrations (generally older animals). Granules were densely concentrated in stellate macrophages, especially near portal triads. Granules also were distributed in hepatocellular cytoplasm, generally concentrated toward the bile cannalicular domain of the cell. Granules were discrete, potentially indicating that Hg was confined within lysosomes. These observations suggested that inorganic Hg deposits initially in periportal regions of young animals, with subsequent accumulation occurring pericentrally, and finally, midzonally as the whales age. Computer-assisted densitometric analysis was used for semi-quantitative evaluation of AMG staining intensities. These AMG staining intensities were well correlated with concentrations of Hg determined via chemical analysis. Areas with AMG-staining were identified and compared with location of lipofuscin in the same field, visualized with fluorescent microscopy. While AMG granules and lipofuscin deposits sometimes were co-localized, they more often were not. In addition, abundant lipofuscin deposition was seen in livers of younger belugas with little to no Hg-catalyzed AMG staining. Also, lipofuscin concentrated predominantly in pericentral regions. These observations suggested that in the healthy marine mammals of this study, marked hepatic lipofuscin deposition most often occurred independently of Hg accumulation. Consequently, hepatic lipofuscin is likely to be a poor indicator of Hg-induced damage in belugas. The abundant lipofuscin deposition in livers of marine mammals was interpreted as most likely denoting a heightened exposure to oxidative stress that is probably inherent to a marine mammalian existence. These oxidative stressors may include a diet high in polyunsaturated fatty acids (PUFAs), alternating hypoxia and abundant oxygenation, and periodic bouts of anorexia associated with migration.
The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.
The project aims to describe the environmental status of marine sediments in van Mijenfjorden. This to provide baseline data of contaminants and biodiversity, as well as for monitoring of eventual contamination from industrial activities (coal mining).
Investigation of benthic faunal communities for: taxon distribution/ biodiversity mapping; examination of effects of glacial and physical disturbance on community structure; relation between faunal structure and sediment contaminants.
The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.
The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.
The aim of the project is to develop a method for analysis of toxaphene in biota from the marine environment. The project includes a modification/improvement of the method of the chemical analysis of PCBs and cholrinated pesticides used at the Danish Environmental Research Institute.
The aim of this project is to conduct quality assurance on the data of organic contaminants obtained in the Greenland / Faroe Islands / Denmark part of the AMAP projects.