To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Sweden as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The first sampling for the soil and vegetation inventory of arable land was done in 1994-1995. The program covers arable land in Sweden and is designed to describe the state of Swedish arable land and the quality of the crop in relation to soil status, cultivation measures, and means of operation. At present soil sampling is made in 2000 fixed sampling points visited every 10th year.
At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables. This program is part of the International Cooperative Programme (ICP) on Integrated Monitoring (IM) of Air Pollution Effects on Ecosystems In Sweden there are three IM-sites, out of which Gammtratten in northern Sweden is one. The IM program at Gammtratten is performed by a consortium including IVL, SGU and SLU-EA. Basically there are three types of monitoring at the IM-sites, viz. Climatic, Chemical and Biological observations. Below is a list of the different analysis programs Air Concentration: SO2, NO2 Bulk deposition: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Throughfall: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Soil water: pH, Cond, tot-N, org-N, NO3-N, NH4-N, Tot-P, PO4-P, DOC, SO4-S, CL, Alk, Ca, Mg, Na, K, Al, Al-tot, Al-org, Al-inorg, Fe, Mn, Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As Groundwater: All years: pH, Cond, Si, NO3-N+NO2-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, Ca, Mg, Na, K, Al, Fe, Mn, Cu, Pb, Zn, Cd, and some years also Hg, Metyl-Hg, Cr, Ni, Co, V, As Stream water: All years pH, Cond, NO3-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, tot-N, tot-C, Ca, Mg, Na, K, Al, Fe, Mn, runoff volume and some years also Hg, Metyl-Hg, Cu, Pb, Zn, Cd and labile Al. Soil chemistry: pH in water extracts, exchange acidity, exchangeable Ca, Mg, Na, K, Al, Mn, and Fe, base saturation and total content of C, N, P, S, Cu, Zn, Pb, Cd and Hg Litter fall: Amount of litter (dw per unit area), total P, C, N, and S, K, Ca, Mg, Na, Al, Mn, Fe and during special years also Cu, Zn, Pb, Cd, Hg Litter decomp.: Dry weight loss from standard needles of Scots pine Soil respiration: CO2 -evolution per hour at 20oC, pH, Pb, Cd, Hg in OF-layer Understorey veg.: Field vegetation: Species, coverage, fertility, trees: speecies, coordinates, dbh, heiight, vitality. Down logs and stumps: species, dbh, degree of decomposition Needle chemistry: Total-P, tot-C, tot-N, and tot-S, K, Ca, Mg, Na, Al, Mn, Fe, Cu, Zn, Pb, Cd, Hg, arginin Biomass: Biomass, tot-C, tot-N, tot-P, K, Ca, Mg, Fe, Mn, Zn, Cu, B Forest injuries: Needle loss, dicolouring of needles, other injuries, tree class Simulated water balance: Precipitation, Evaporation, Runoff, Soil water, Snow Network type: integrated monitoring
The sample plot-based national forest inventory (RIS-RT) has been a continuous activity at SLU (and the forest research organizations existing before SLU) since 1923. All Sweden is included except the subalpine birch forest along the mountain chain. The national forest inventory is part of Sweden’s official statistics and is maintained by the Department of Forest Resource Management (SLU-FRM). The sampling strategy combines random and fixed plots and covers the country every 5 years. Each year around 10 000 sample plots are field surveyed nationwide. Approximately 200 variables are recorded for each plot.
Connect public health laboratories and institutes throughout the circumpolar north for the purposes of monitor infectious diseases of concern. Main gaps: russia
Statistics Sweden has all relevant data related to population size, age structure, gender, births, deaths, and migration. The same types of data are collected for the whole country and are standardized for administrative units. Since the population data also contain the geographical coordinates for the place where each person lives, it is also possible to present the statistics for arbitrary geographical units. However, the official population and health statistics do not contain any information concerning which persons belong to the indigenous / non-indigenous population. In Sweden, this would be of relevance for studies of living conditions among the Sámi population. However, such studies have been conducted only in very specialized research projects based on the researcher’s own data collection and carried out in agreement with the Sámi people. Statistics Sweden reports on how many individuals enter and complete different levels of education. The statistics can be separated by geographic area. Statistics Sweden has data on unemployment and the distribution of incomes in different regions. Main gaps: No official statistics are easily available about the use of languages or about religious practices in general. For individuals with a foreign background, the country of birth, citizenship, and year of immigration to Sweden are registered. However, the official statistics do not separate the native indigenous from the non-indigenous population. Although the Sámi languages are officially acknowledged as minority languages, the trends concerning the number of people that speak and use them is not systematically monitored.
Detailed information about the health status of the population, e.g. birth weight and causes of death, is available from the National Board of Health and Welfare (www.sos.se). Much of the health data is available directly from their website. Information related to mental illness and information related to the quality of health care in different regions is also available. Data on absence from work due to illness are readily available from Statistics Sweden.
The Swedish Radiation Safety Authority (SSM) has 32 measurement stations distributed across Sweden, of which 16 are situated north of 60°N (Table 6, #6.1). They mainly measure radiation from radioactive compounds on the soil surface and automatically sound the alarm if the radiation increases. Every seventh month, radioactivity is measured on the soil surface at 4 to 5 spots in every municipality to check eventual radiation changes and to retain knowledge at an acceptable level (Table 6, #6.2). Special programs monitor 137Cs in humans (whole body), reindeer, fish, moose, and roe deer (Table 6, #6.3). The main incentive for this is the remains from the Chernobyl accident in 1986.
Estimates of human intake of environmental pollutions via food and drinking water are performed in cooperation with the National Food Administration (Table 4, #9.4). During 2006 an estimation of children’s intake of dioxin was finalized. The concentration of pollutants in groundwater wells is studied in cooperation with SGU and the National Board of Health and Welfare.
One focus of SEPA’s subprogram for human biological data concerns metals in human bodies (Table 4, #9.1). It includes studies on lead concentration in human blood, mercury in hair, and cadmium concentration in urine. Old hair samples have been collected and analyzed for mercury. Methyl mercury may damage the central nervous system, and at the fetal stage effects may occur already after low exposure. A study in Uppsala is investigating persistent organic compounds in breast milk. Concurrently, the young mothers answer a questionnaire, and hair samples are collected to analyze methyl mercury. Cadmium in urine is an indicator of the load on kidneys, and especially women with low iron storage have an elevated risk for increased cadmium uptake. A program on cadmium in women that started in Gothenburg, then expanded to Stockholm, Lund, and Umeå is under way. In 2007, a second round started in Gothenburg. A questionnaire is filled in concurrently with collection of a urine sample.
Organic compounds, especially persistent organic pollutants (POP), are of special interest and are included in one of SEPA’s subprograms (Table 4, #9.2). The subprogram includes different groups in the population. On military enlistment, young men are tested for persistent organic compounds in the body. Mercury content is measured in high consumers of fish, and the concentration of flame retardants is measured in samples of breast milk from women who breast-feed. The National Food Administration stores important data from control of pesticides in vegetables, where more than 2 000 samples are taken per year and residues from more than 200 different pesticides are analyzed. To date, no data have been analyzed and reported from this material, but it will be done in the first phase of this SEPA subprogram. Sampling of breast milk will continue with the intent to monitor organic environmental pollutants. Already existing is a long time series on the concentration of flame retardants and PCB in breast milk. Concurrently, samples will be transferred to the environmental sample bank at the Swedish Museum of Natural History (NRM), which means that samples will be available for comparison in the future.
Studies of human exposure to cancer-inducing air pollutants (Table 4, #9.3) are being conducted in Gothenburg, Umeå, Stockholm, and other sites. The importance of smoking habits, traffic, and other potential sources will be determined for a better risk evaluation. Measurements will be conducted according to a rolling schedule, with one city at a time and a group of 40 randomly chosen people, 20 to 50 years of age. The background concentrations in air will be followed at the same time. Exposure to nitrogen dioxide is particularly severe during winter. An estimate of the number of people exposed to nitrogen dioxide concentrations in excess of current limits is performed every fifth year. An improved method of calculation, i.e. the urban model, has been used since winter 2006/2007. The urban model will also be used to calculate the number of people that are overexposed to particles.
Stream water is assessed in two programs in which SMHI conducts most river discharge observations. It has 155 discharge stations in northern Sweden that belong to the Base Hydrological Network (Fig. 5, Table 6, #3.1). SMHI reports daily discharges in 46 rivers north of 60°N to BALTEX (Table 6, #3.2). The size distribution of the catchments is characterized as minimum 30 km2, median 6 400 km2 and maximum 33 930 km2, and the relative area of lakes as minimum 3%, median 6.4%, and maximum 21%. SLU is in charge of the water quality and SFB of the test fishing program. In the River Mouth Survey the goal is to estimate the element discharge from Sweden to the sea. Monthly sampling is conducted in 23 rivers and the samples are analyzed for pH, conductivity, NH4, NO2, NO2+NO3, Kjeldahl-N, Tot-N, Tot-P, PO4, TOC, Si, absorbance (on filtered and nonfiltered samples), KMnO4, Fe, Mn, alkalinity, Ca, Mg, Na, K, SO4, Cl, F, Cu, Zn, Cd, Pb, Cr, Ni, Co, Ni, V, As, Al, Hg. The primary goal of the Trend Streams program is to build time series to detect eventual environmental changes. The streams are of quite different sizes, with drainage basins from 1 to 10 000 km2. For water chemistry 37 streams are sampled monthly and the samples analyzed as for the River Mouth Survey. Out of the 37 streams 27 are selected for yearly sampling of bottom fauna and benthic diatoms, and in turn electrical test fishing is performed once per year in 16 of these.
The National Lake Survey (Table 4, #7.4) gives an aerial coverage of water quality in Swedish lakes. Water samples are taken at 0.5 to 2 m depth in a total of 1841 lakes in northern Sweden in a 6-year rotation with about 350 lakes per year. The samples are taken after the lake’s complete overturn in the autumn. For water chemistry the samples are analyzed for 20 variables (temperature, pH, NH4, NO2+NO3, Tot-N, Tot-P, PO4, TOC, Si, absorbance, Fe, Mn, alkalinity, Ca, Mg, K, Na, SO4, Cl and F) and less frequently for 9 trace metals (Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al). In the Trend Lakes program the sampling is more frequent (4 times per year for water chemistry and one time per year for bottom fauna, phytoplankton and macrophytes). The aim of the program is to build time series to detect environmental changes due to e.g. Climate change or large scale changes in deposition load. In this program about 40 lakes are sampled in northern Sweden. For water chemistry the samples are analyzed for the same elements as in the National Lake Survey. In addition test fishing is conducted in 2 of the lakes per year. Invented variables: Temperature, pH, NH4, NO2-NO3, Tot-N, Tot-P, PO4, TOC, Si, Absorbance, Fe, Mn, Alkalinity, Ca, Mg, K, Na, SO4, Cl, F, and trace metals Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al Sampling depths: Sampling at 0.5 - 2.0 m depth during fall circulation Network layout: The network is based on EMEP-squares and gives between 19 and 134 lakes sampled per county every year. Sampled lakes rotation: About 350 lakes are sampled in northern Sweden every year in a six-year -periodical program. Out of 4824 lakes sampled in the country 2112 are situated in northern Sweden.
Since the late 1960s, the Swedish Geological Survey (SGU) has operated a groundwater network comprising about 400 wells throughout Sweden. The groundwater level is measured twice per month, resulting in maps (published monthly) of the groundwater situation in the country (Table 6, #7.1). Chemical analyses are performed twice per year in 30 wells selected from the network (Table 6, #7.2). The groundwater sampling network for water quality called “reference stations – groundwater” is split in two parts: one called trend stations (comprised of 80 stations that are sampled a couple of times per year) and the other called periodical stations (comprised of a large number of stations sampled once every 6 years). In total, 528 stations are sampled every 6 years, most of which are natural springs and the rest are groundwater observational wells and municipal water supplies (Table 4, #7.1). Half of the trend stations are situated in small aquifers, e.g. till deposits, while the other half are situated in large aquifers such as sand and gravel deposits in eskers and fossil deltas. Groundwater from all stations is analyzed according to a base program. In addition, complementary analyses are performed for a number of trace elements (Cu, Zn, Pb, Cd, Cr, Ni, Co, As, V and in some cases Hg). SGU operates a network for groundwater comprising about 400 stations for groundwater level and 30 stations for groundwater quality. This network is financed by SGU and data are not freely available. SGU also operates a environmental monitoring network for groundwater comprising 80 trend stations visited a couple of times per year and 528 periodical stations that are only visited oncce per six years. This monitoring network is financed by SEPA and data can be downloaded from SGU hompage. Water from the reference stations are analyzed for the following chemistry: All stations: Temperature, pH, PO4-P, Tot-P, conductivity (EC), NH4-N, NO3-N, NO2-N, Tot-N, TOC, F, Cl, Alk/Ac, SO4, Ca, Mg, Na, K, Fe, Mn, Si and Al Further analysis for periodical stations are the following metals Cu, Zn, Pb, Cd, Cr, Ni, Co, As, V and Hg and the organic compounds trichloretylen, tetrachloretylen
Since 2007, SLU has conducted daily phenology observations on forest trees (birch, Scots pine, and Norway spruce) during the spring at four sites in northern Sweden (Fig. 5, Table 5, ##7.2, 8.2, 13.2, and 14.2) In addition, the phenology of 15 plant species is observed at two sites and of birch at one site, all at Abisko (Table 5, #1.11, and 1.12).
At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables (Table 4, #3.2). SGU conducts groundwater sampling at 3 of the sites. In total, 18 stations are sampled 4 times per year. A program for comprehensive information on the state of forests in Europe was launched 1985 in response to acid deposition and fear of forest decline. The program was named the European ICP-Forest Program (International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution, Table 6, #5). ICP-Forest monitors forest conditions in Europe and operates at two levels of intensity. Level I is a systematic 16 km by 16 km transnational grid having around 6 000 observation plots in Europe. Level II is comprised of around 800 sites in selected forests throughout Europe with more intense observations. The Level I measurements consist of three parts: crown condition assessment, soil condition assessment, and foliar survey. The crown condition assessment includes the degree of defoliation, discoloring, and damage visible on trees. The soil condition assessment addresses possible nutrient imbalances caused by, e.g. acid deposition. The foliar survey assesses foliar nutrient concentrations, because changes in environmental conditions may affect foliar nutrient concentrations. The Swedish contribution is made by the national forest inventory (SLU-FRM), which estimates the degree of crown defoliation and discoloring on 700 permanent plots around the country. The Swedish Forest Agency (SST) organizes the Level II observational plots. They manage a program with more than 200 permanent plots throughout Sweden, on which they estimate forest vitality (several measures), forest growth, soil chemistry, and field vegetation. Of these plots, 100 are connected to the international network, and 20 are north of 60°N. Foliage chemistry is determined on 100 plots, deposition and soil water chemistry on 50 plots, air quality on 25 plots, and climate on 14 plots. The sampling intensity varies from once in 5 years to once per hour depending
At present there are about 12 micrometeorological tower sites north of 60°N in Sweden that use eddy covariance techniques to measure the exchanges of carbon dioxide, water vapor, energy, and at some sites methane between terrestrial ecosystem and atmosphere on a long-term and continuous basis (Table 5, ##5, 9, 11, 12, 15, 16–22). Among these tower sites, Norunda is the oldest and most complete complete (Table 5, #5). Three towers are in use at Rosindal, 70 km northwest of Umeå, in full-scale nitrogen and carbon dioxide experiments (Table 5, #12). In addition, one site is located at Zackenberg on Greenland (Table 5, #22). At the sites, data on vegetation, soil, and meteorological and hydrological conditions are also collected. The Swedish sites are integrated in the international Fluxnet program that assembles more than 400 eddy covariance sites around the world in an effort to better understand land surface – atmosphere interaction and its role in global change. The Swedish micrometeorological towers are presently financed by research councils, viz. Swedish Research Council (VR) and Formas, EU and university faculties. A European research infrastructure for flux measurements, the Integrated Carbon Observation System (ICOS) is being planned and includes Sweden as one of the participating nations.
Bird populations are monitored as part of SEPA’s “Landscape” program. The Swedish bird census project determines, once per year, the species and number of birds at about 500 sites throughout the country (Table 4, #5.2). The Department of Zooecology, Lund University, organizes this census. Ottenby Bird Observatory on Öland is responsible for bird counting and ringing of small birds at Ottenby (Table 4, #5.3), a key location for migrating birds. From August to November the number and species of migrating birds are counted at Falsterbo in southern Sweden. The Department of Zoo-ecology, Lund University, organizes the census (Table 4, #5.4). Falsterbo is a key location for migrating birds of prey. The Swedish sea-bird inventory is taken place at about 100 sites where these birds spend their winter. Number and species are estimated in January of each year in the internationally coordinated program. The Department of Zoo-ecology, Lund University, conducts the Swedish part (Table 4, #5.5).
Census on small mammals (voles, lemmings, and shrews) are conducted twice per year at 3 sites along the mountain chain (Table 4, #2.2) and at 2 sites in the forest landscape (Table 4, #3.3). Part of the material collected is sent to the environmental sample bank at the Swedish Museum of Natural History (NRM). The Department of Ecology, Environment, and Geosciences (UmU-EMG) at Umeå University is in charge of the program and analyzes the data.
Samples in moose (Table 4, #3.4) from Norrbotten and Jämtland counties (and 3 counties in southern Sweden) have been analyzed every autumn since 1996. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Hunting associations organize much of the field sampling. Analyses: As, Cs, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Ni, Se, Sr, V, Zn. 2007 screening of organic compounds Sites: Norrbotten, Jämtland, Western Götaland, Jönköping, and Kronoberg Counties Intensity: Each autumn since 1980 (Grimsö), else from 1996