To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Sverdrup Research Station, Ny-Ålesund as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
This project investigates how solar UV radiation affects planktonic food webs in the Arctic by changing the nutritional quality of the lower trophic levels. UV radiation has been documented to lead to oxidation of poly-unsaturated fatty acids (PUFAs) in phytoplankton. These PUFAs cannot be synthesized de novo by zooplankton, but are key molecules for the marine pelagic food web. A combined approach was chosen with both sampling of field data (physical as well as biological) and experiments which were carried out during two field seasons in Ny Ålesund in 2003 (april/may) and 2004 (may/june). In 2004, the main part of the field work consisted of an outdoor experiment where phytoplankton was exposed to different irradiation regimes, using the natural sunlight. Algae from all different treatments were used for feeding zooplankton in order to trace the transfer of irradiation-induced changes of the fatty acid composition in phytoplankton to the next trophic level. A number of additional parameters will be analysed as well, combined with the results of an extensive measurement series of both PAR- and UV light. The experiment was carried out on the old pier (Gamle Kaia), while the laboratory part took place in the Italian station ‘Dirigibile Italia’.
Effects of UV radiations on lipids, fatty acids and nutritional quality of Arctic marine algae and zooplankton
Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.
Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.
As a result of the increasing atmospheric CO2 levels and other greenhose gases due to anthropogenic activities, global and water temperature is rising. The objectives of our project might be summarized as follows: I. To measure the activity of the enzymatic systems involved in carbon, nitrogen and phosphorus uptake (carbonic anhydrase, nitrate reductase and alkaline phosphatase) in selected macroalgae. To assess the optimal concentration of inorganic nitrogen and phosphorus for growth and photosynthesis. To study the total concentration of carbon and nitrogen metabolites in the macroalgae (proteins, total carbohydrates, and lipids) in order to define the possible existence of nutrient limitation. II. To simulate the conditions of climate change, represented as CO2 enrichment and increasing UV radiation, on the activity of carbon, nitrogen and phosphorus uptake mechanisms. III. To screen the activity of the enzymatic systems previously detailed in macroalgae from the Konjsfjord, in order to know their nutritional state.
Seasonal ozone depletion in now occurring both in the Arctic and Antarctic, thus increasing levels of UV-B radiation reaching polar bilogical systems.
In the present time, we have lack of information and knowledge as far as the fate of presistent organic compounds in the Arctic environmet including ice.
Study of the energy exchange between atmosphere and ice sheets by means of measurment of solar radiation
Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.