Sverdrup Research Station, Ny-Ålesund: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Sverdrup Research Station, Ny-Ålesund as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 16 of 16
1. Arctic and Alpine Stream Ecosystem Research

The project, Arctic and Alpine Stream Ecosystem Research (AASER), started within EU’s Climate & Environment Programme and now continues with national funding, primarily Norway, Italy and Austria. The objective is to study dynamics and processes in rivers systems in Arctic and Alpine regions. Emphasis is given to the relationships between benthic invertebrates and environmental variables, especially in glacier-fed systems and in relation to climate change scenarios. On Svalbard research is concentrated around Ny Ålesund, particularly Bayelva and Londonelva. In 2004 the focus will be on the use to stable isotopes to detect transfer processes within and between ecosystems.

Glaciers Biology Catchment studies Spatial trends Climate change Biodiversity Arctic Food webs Temporal trends Ecosystems
2. Digestibility of Ice Algae and Phytoplankton: The Potential Impacts of Changing Food Supply to the Arctic Benthos

Sea ice is a dominant feature of marine ecosystems in the Arctic. Its presence directly or indirectly impacts Arctic marine ecosystems, especially on the shelves where benthic and pelagic systems are extensively coupled. If the extent and thickness of sea ice continue to decline, we predict a shift in the type of algal material reaching the benthos (from ice algae to phytoplankton), which will potentially impact the food requirements of the benthos. We have several pieces of evidence showing that both types of ice algae (below-ice ice algae dominated by Melosira arctica and within-ice ice algae dominated by Nitzchia frigida) presently reach the benthos in significant quantities. What we don’t know, and what we propose to address is: “What is the digestibility of ice algae and phytoplankton-derived organic matter by the Arctic macrobenthos?” From the perspective of a macrofaunal organism, digestibility includes three separate components: 1) selection (is encountered organic material ingested or rejected?); 2) absorption (is ingested organic material absorbed during passage through the gut, or does it get egested in the feces?); and 3) assimilation (is absorbed organic material assimilated into biomass?). We propose a series of hypotheses to guide our assessment of digestibility: H1: There is no difference in the quality of ice algae and phytoplankton as food for benthic organisms. H1i: There is no difference in the long-term assimilation of ice algae and phytoplankton by benthic organisms of different trophic groups (suspension feeders, deposit feeders, omnivores). H1ii: There is no difference in the short-term absorption efficiency among different trophic groups feeding on phytoplankton and ice algae. H2: The response of benthic organisms to ice algae and phytoplankton as food sources is the same when assessed on a Pan-Arctic scale. Assessment of long-term assimilation of the various types of algae (within-ice ice algae; below-ice ice algae; and phytoplankton) will be conducted by determining lipid biomarkers and their isotopic ratios, and by determining CHN and protein signatures of organisms collected during all aspects of the work (summer ’02; spring ’03; fall ’03; and summer ’04 in both Norway and Kotzebue, Alaska). Assessment of short-term absorption will first use the ash-ratio method in a whole core delivery experiment. Following the whole-core experiments, dominant taxa from each trophic group will be identified and used in a comparison of 1) absorption efficiencies as calculated by the ash-ratio method, and 2) carbon retention efficiencies as calculated using a pulse-chase radiotracer approach. Finally, we will repeat the dominant taxa absorption efficiency experiments in both Svalbard, Norway at the Ny Ålesund lab and in Kotzebue Sound, Alaska.

Biology Sea ice Geochemistry Food webs Sediments
3. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
4. Physiological studies of arctic birds

The activity in 2004 will be devoted to two projects: First, we will perform banding of breeding adult Kittiwakes in the Kongsfjord area. The Kittiwakes will in addition to standard metal rings be equipped with a colour-ring with a combination of letters and numbers, making identification at a distance easier. This banding programme was initiated in 2003 and will in the coming years be used to calculate local survival rates of the Kittiwakes breeding the Kongsfjord area. Secondly, we intend to place a number of breeding boxes for Snow Buntings in the Ny-Ålesund area. In the coming years this will make access to breeding adults and nestlings easier enabling physiological studies. These studies will focus on various aspects of metabolism and energetics of the breeding population of Snow Bunting on Svalbard, and we also want to compare the physiology of the Svalbard population with the breeding populations on ’mainland’ Norway.

Biology Populations Seabirds Reproduction
5. Contaminants in polar fox

Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavorable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from “insensitive”, adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future reseach area. In the present study, we will use arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants (OCs) in relation to natural variations in lipid status (field study). These data will be supplemented and validated through a contamination study with blue fox (A. lagopus), where the seasonal changes in lipid status of wild fox are simulated in the laboratory. In both the field and laboratory study, possible effects of OCs on steroid hormone synthesis, and plasma levels of hormones, vitamin E and retinol will also be assessed.

Biological effects Biology Organochlorines PCBs Arctic Persistent organic pollutants (POPs) Pesticides
6. On thin Ice

On thin Ice

Biology Biodiversity
7. Seal studies in Kongsfjorden 2003

Seals studies

Biology Marine mammals
8. Effects of UV-B radiation on Microbial communities in Kongsfjorden

Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.

Biological effects Ozone Biology UV radiation Heavy metals Environmental management Exposure Arctic Model ecosystem Ecosystems
9. Physiological adaptations of the arctic fox to high Arctic conditions

To investigate arctic foxes physiological adaptations to life at high latitudes. Resting and running metabolic rates, body weight, food intake, body core temperature, heart rate, and blood parameters were examined during different seasons and during periods of food deprivation.

Biological effects Biology Climate Arctic Ecosystems
10. Diversity and nitrogen fixation activity of cyanobacterial communities in terrestrial arctic ecosystems

Biological nitrogen fixation by cyanobacteria is a key process for productivity in terrestrial Arctic ecosystems and the activity is dependent of size and diversity of cyanobacterial populations. Changes in biodiversity after pertubations of different types of habitats simulating climatic changes or other antropogenic effects will be studied by molecular methods and correlated to variations of nitrogen fixation activity.

Biology nitrogen fixation cyanobacteria Climate change Biodiversity Arctic
11. Diversity and changes on temporal and spatial scales of the cyanobacterial community in the high arctic environment of Spitsbergen, Svalbard Islands

The structure and role of the cyanobacterial communities that colonise bare soils and fix nitrogen in the arctic ecosystem will be studied. The planned activities will focus on the isolation, identification and characterisation of cyanobacteria from arctic habitats and on the changes of the cyanobacterial community along a transect from a retreating glacier front to a more stable habitat characterised by the presence of mature vegetation. For these purposes, a polyphasic approach encompassing microbiological, morphological and molecular techniques will be applied to environmental samples and isolated cultures. The obtained results will give new insights on the diversity and role of nitrogen fixing cyanobacteria in the arctic and, in more general terms, on ecosystem development under changing climatic conditions.

Biology nitrogen fixation cyanobacteria Soils Climate change Biodiversity Arctic Ecosystems
12. Monitoring of arctic foxes (Alopex lagopus) in the Kongsfjord area

To evaluate temporal variation in arctic fox numbers and their food resourses in the Kongsfjorden area. The number of foxes captured per 100 trap-days are used as an index of fox density termed "Fox Capture Index". The observations of denning activity i.e. observation of number of arctic fox litters and litter size at den are termed "Fox Den Index" as a second index of fox abundance. A third index is termed "Fox Observation Index". This index is based on both observations of adult foxes seen away from breeding dens pr 100 h field work and reports on request from scientists and local people on observations of adult foxes during summer. In addition, reports on observation of fox tracks in the study area were collected in 1990-2001 as a fourth index, which were called "Fox Track Index". The field census are conducted for 10 days starting at the end of June. All dead foxes in the area should be collected.

Biology Climate Terrestrial mammals Arctic Reproduction Ecosystems
13. Incubation behavior and energetic strategy of femal Common Eider

The aim of this programme will be to study the mechanisms of the regulation of the body fuel utilizon and energy expenditure during fasting

Biology
14. Energy Allocation

Energy allocation

Biology
15. Metabolic and hormonal correlates of reproductive effort in the kittiwake

Parental effort, the extra energy expenditure above maintenance levels devoted to the care of affspring, has been postulated to incur a fitness cost.

Ecology Biology Physiology
16. ESPRI

The objectives of this project is to study the effect of environmental stochasticity on the Svalbard reindeer population dynamics, nad further evaluate how this may affect reindeer-plant interactions.

Biological effects Biology Populations Climate variability Climate Climate change Terrestrial mammals Arctic Reindeer Temporal trends Ecosystems