To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential
A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/ pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroïd hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser.245 : 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nest with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight:5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture and recapture sessions (kittiwakes spontaneously regurgitate food when handled). Breeding adults and chicks will be maked with plastic rings that allow identification from a distance.
The aim of this programme was to study the physiological and behavioural adaptations to the incubation fast in the female eider. This leads to study fundamental questions about three complementary field researches described below. 1. Evolutionary and ecological approaches: energetic costs of reproduction during incubation In long-lived birds as Eider, there must be trade-offs between the energy allocated in growth and in reproduction. Therefore, individuals develop different reproductive strategies in relation with biotic and non biotic factors to maximize their fitness. Among factors tested, we will first measure the effects of animal density on female reproductive success. Additionally, we will measure, thanks to genetic tests, 1) the characteristics of eider populations (dispertion) by comparing birds originating from several islands and several locations on the same island, 2) the frequency of intra-specific nest parasitism and 3) extra-pair copulations to link these events with female behavioural decisions. To link reproductive effort with female immunocompetence, we will then perform PHA (phytohaemagglutinine) skin tests at different stages of the incubation period. Finally, we will perform clutch reductions at different stages of the incubation period in order to highlight decision rules controlling nest desertion in females. 2. Physiological and ecological approaches: parental investment in reproduction We will also focus on the implication of prolactin and corticosterone in the control of parental decision at the hatching stage. Implantation of exogenous hormones will be done on nesting birds to evaluate the respective role of these two hormones in the control of parental decisions in eiders. Parental investment in incubation can be regulated by the reproductive value of the clutch size. To further understand the mechanism underlying nest desertion, we will measure the induced-changes in prolactin and corticosterone concentrations after clutch size manipulation overall the incubating period. 3. Physiological approach: regulation of body fuel utilization during fasting The aim will be to study the mechanisms of the regulation of body fuel utilization and energy expenditure during fasting. For this purpose, the ability of eider duck to withstand long periods of starvation will be studied by measuring the variations in plasma of major substrate concentrations (as index of lipid or protein breakdown) and hormones (e.g., leptin, glucagon, corticosterone, T3, ...). The study of duck’s adaptation to extended fasts occurring at specific stages of their life might help to understand important underlying mechanisms, such as reduction in energy expenditure, long-term regulation of body fat storage and mobilization, as well as long-term control of food intake.
Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.
The aim is a better understanding of the impact of contemporary climatic change (posterior to Little Ice Age) on plant dynamics and the morphodynamic processes active at the glacial margins in polar environments. The selected research field is constituted of the Brøgger Peninsula, where erosion assessments will be evaluated for various processes (frost weathering, runoff, biological weathering, …).
The 2004-2007 scientific research program CHIMERPOL II consists in improving the results obtained during the CHIMERPOL I programme around three main ideas: 1-Understand physico-chemical processes of oxidation of elemental gaseous mercury in the atmosphere during Mercury Depletion Events (MDE) in Corbel, Svalbard from 2004 to 2007 with a continuous monitoring station for gaseous mercury and its speciation, 2-Evaluate deposition and emission fluxes of mercury above the Arctic snow pack by a continuous monitoring of these fluxes in Corbel, Svalbard and in Station Nord, Greenland, from 2005 to 2007. 3-Determine the Air-Snow-Firn-Ice transfer function for mercury and its speciation with a complete balance of mercury in the different compartments in Summit, Greenland from 2006 to 2007.
This technological program aims to get a better view of the Corbel site quality (78 54 N, 12 07 E, Svalbard close to Ny Alesunsd) for atmospheric chemistry. Nox and SO2 samplers are deployed on 16 places on a 4 km2 area around the Station (79°N, Svalbard), protected from snowscooters activity. The influence of Ny Alesund village is also studied. Programme 2004 April 2004 : poles installation and samplers deployment on the 16 stations; analysis will be made by CNR.
The aim of this research program is to examine the response of animal populations to environmental variability at different spatial scales. We attempt to determine how individuals respond to the spatial heterogeneity of their environment, and what are the consequences of this response for the dynamics of subdivided populations. Specifically, we consider an ecological system involving biotic interactions at three levels: seabirds, their tick _Ixodes uriae_, and the microparasite _Borrelia burgdorferi_ sensu lato (Lyme disease agent). Colonies of seabirds represent discrete entities, within and among which parasites can circulate. Our previous work on this system in the norwegian arctic has enable us to show that (1) host dispersal can be affected by local conditions, (2) seabird tick populations are specialised among different host species, namely between sympatric kittiwakes _Rissa tridactyla_ and puffins _Fratercula arctica_, (3) in the kittiwake, females transmit antibodies against _Borrelia burgdorferi_ when their chicks have a high probability to be exposed to the tick vector. We propose to combine different approaches, incorporating field surveys and experiments and population genetic studies (of hosts and parasites), in order to better understand the role of local interactions and dispersal in the dynamics of such a system. The research program implies collaborations with researchers from other french groups, as well as with Canadian (Queen’s University) and Norwegian colleagues (from NINA and the University of Tromsø).
The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.
The aims of the project are: - to evaluate the fluxes of radionuclides in the water column and their accumulation in the sediment, on a short-time scale; - to determine the C/N and delta13C-delta15N ratios in suspended and sedimentary matter, and test their use as tracers of origin, composition and transformation pathways of organic particles. The selected study area is the Kongsfjord-Krossfjord system, Svalbard, considered as representative test-site for studying processes occurring in Arctic fjords. The focus of the project will be on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer. Specific methods will be used to trace the particle sources. The rate of accumulation-resuspension processes will also be investigated from the inner fjord to the outer continental shelf.
The high Arctic contains delicate, relatively pristine ecosystems that are increasingly subject to exported aerial pollution (e.g. nitrogen) and higher than average climatic temperature change. Together these factors may potentially change important biogeochemical processes (e.g. the cycling of carbon and nitrogen) and ecosystem dynamics. This project involving the University of Nottingham, The British Geological Survey and IACR Rothamsted is now entering its second field season. The project concentrates on the release and the subsequent fate of N, entering the tundra ecosystem, as a pulse during the spring thaw. The questions we propose addressing are (i) how important is this event in transferring enhanced N deposition to tundra ecosystems, and how much is lost as run-off to lacustrine and inshore marine environments, (ii) how does enhanced N affect the carbon cycle (i.e. plant growth, decomposition processes) and (iii) what is the impact on soil N mineralizationimmobilization dynamics. Two plot experiments have been set up at contrasting vegetation sites around Kongsfjorden (Brandalspyntyn and Ny-London). We have simulated the release of N from the snowpack by applying 15N label as the snow has melted. An accurate audit regarding the fate of this snowpack N can then be made (i.e. does it remain in the soil, enter the tundra flora and soil microbiology or is it lost from the system). In addition, using techniques for combined 18O+15N analysis of nitrate, we can distinguish between atmospheric- and soil-derived nitrate. This will allow us to assess and source losses of N from the tundra during the brief summer growing season. These complementary approaches will provide a quantitative understanding of the fate of deposited N in the pristine Arctic environment. The overall aim will be to parameterize an N-flux model for this important ecosystem.
This project will construct detailed phosphorus budgets for polar catchments occupied by glaciers and freshwater systems undergoing rapid response to climate warming. These are Midre Lovenbreen, Svalbard; Jebsen Creek, Signy Island (maritime Antarctic) and Storglaciaren, northern Sweden. The relationship between meltwater production, pathway and phosphorus liberation from glacial sediments will be examined closely. Emphasis will be given to phosphorus sorption dynamics in turbid glacial streams and their receiving waters (fjords and lakes).
To determine where different types of impurities (primarily specific inorganic chemical species and microbes) are located on a microspopic scale within the ice and what controls their distribution.
Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.
Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.
Study aerosol properties (size and composition) in the infrared spectral region
A high precise GPS-receiver with high time resolution is operated together with the Norwegian Mapping Authority in Ny Ålesund since 1999. Datasets are transmitted continuously and automatically via Internet to the GFZ in Potsdam where they are evaluated for two purposes. Firstly to determine station coordinates, ephemerides for all GPS-satellites and high temporal resolved vertical integrated water vapor for the International GPS Service (IGS). Secondly they are used as reference for the CHAMP-satellite to determine its exact orbit and to calculate water vapor profiles from on board GPS-receiver-data.
By launching several hundred ozonesondes at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differences given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution.
The major goal of the process study between April 15 and May 15, 2003 is to obtain quantified information on reaction path-ways, products and net deposition of mercury during Arctic sunrise.
In the late seventies, ELLIOTT and KINGSTON (1987) discovered a polychaetous annelid in various North Sea estuaries that had previously been found only in North American estuaries. Further specimens of what appeared to be the same species were found in the mid-eighties in the coastal waters of the Baltic Sea (BICK and BURCKHARDT, 1989). The distribution of these events in time and space led to the assumption that a North American species had immigrated to the North Sea and then extended its range of distribution to the Baltic. Within several years this species became one of the most dominant species in these estuaries. Identification of the immigrant was beset with problems from the start. It was identified as M. wireni AUGENER, 1913 or as M. viridis (VERRILL, 1873). It was the population genetic studies by BASTROP et al. (1995) and ROEHNER et al. (1996a, b) that showed the presence of genetically distinct forms in the North and Baltic Sea as well as in different regions of the north eastern coast of America. The morphological studies undertaken against this background allowed a good discrimination between these species (BICK & ZETTLER, 1997). Though, all authors dealing with the two species immigrated into the European estuaries were unable to name these species. The main reasons for this uncertainty are: - species identification is difficult, because diagnostic characters vary with growth (BICK, 1995), - the geographical distribution of Marenzelleria species is far from clear, - type material no longer exists or it is in poor condition (BICK & ZETTLER, 1997). Specimens of the type species of the genus, Marenzelleria wireni, were recorded from the Arctic region, Franz-Joseph Land and Spitzbergen (WIREN, 1883 and von MARENZELLER, 1892). As mentioned above, these specimens deposited in the Zoologisches Museum Hamburg and the Swedish Museum of Natural History, Stockholm are in poor condition. As far as we know further material from these regions does not exist. In order to eliminate the taxonomic uncertainty it is necessary to investigate morphologically and genetically specimens from the type locality.