Svalbard: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 2 of 2
1. The Effect of solar UV on lipids in the planktonic food chain of polar freshwater ponds

Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.

Biological effects UV radiation freshwater plankton Climate change Exposure Arctic Food webs Diet Ecosystems lipids
2. Lipid biochemical adaptation of pteropods

The polar pteropod Clione limacina is characterised by high quantities of lipids with ether components (1-O-alkyldiacylglycerol=DAGE) in combination with odd-chain fatty acids. It is unknown why Clione and probably other pteropods have specialised in this manner. Furthermore the precursor of the biosynthesis of these compounds is still unknown. Therefore samples of Clione limacina and its only prey Limacina helicina will be collected by using plankton nets from small boats. The species will be kept in aquaria and feeding experiments with both species and food of different composition and nutritional value are planed.

Biological effects Clione limacina Biology Pteropods Arctic Limacina helicina Ecosystems Lipids