Svalbard: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 17 of 17
1. Polish Polar Station Hornsund as member of International Real-time Magnetic Observatory Network (INTERMAGNET) (Hornsund INTERMAGNET)

INTERMAGNET is global network of observatories, monitoring the Earth's magnetic field

Geophysics
2. Polish Polar Station Hornsund as member of International Monitor for Auroral Geomagnetic Effects (IMAGE) (Hornsund - IMAGE)

The prime objectives of IMAGE are to study auroral electrojets and moving two-dimensional current systems.

Geophysics
3. Polish Seismological Network

Polish Seismological Network is to record and investigate on seismic events recorded by permanent Polish seismic stations. The seismic station at Hornsund is a Polish station despite its location outside Poland’s territory Network type: Geophysical observations

Geophysics
4. ISACCO(Ionospheric Scintillations Arctic Campaign Coordinated Observations)

The polar ionosphere is sensible to the enhancement of the electromagnetic radiation and energetic particles coming from the Sun expecially around a maximum of solar activity . Some typical phenomena can occur such as, among the others, geomagnetic storms, sub-storms and ionospheric irregularities. In this frame the high latitude ionosphere may become highly turbulent showing the presence of small-scale (from centimetres to meters) structures or irregularities imbedded in the large-scale (tens of kilometers) ambient ionosphere. These irregularities produce short term phase and amplitude fluctuations in the carrier of the radio waves which pass through them. These effects are commonly called Amplitude and Phase Ionospheric Scintillations that can affect the reliability of GPS navigational systems and satellite communications. The goal of this proposal is to contribute to the understanding of the physical mechanisms responsible of the ionospheric scintillations as well as to data collecting for nowcasting/forecasting purposes at high latitude. As the scarceness of polar observations, the specific site near Ny-Ålesund is of particular experimental interest.

Mapping Geophysics Modelling Arctic Atmosphere ionospheric scintillation and TEC (Total Electron Content) monitoring.
5. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
6. GPS-high-rate-receiver

A high precise GPS-receiver with high time resolution is operated together with the Norwegian Mapping Authority in Ny Ålesund since 1999. Datasets are transmitted continuously and automatically via Internet to the GFZ in Potsdam where they are evaluated for two purposes. Firstly to determine station coordinates, ephemerides for all GPS-satellites and high temporal resolved vertical integrated water vapor for the International GPS Service (IGS). Secondly they are used as reference for the CHAMP-satellite to determine its exact orbit and to calculate water vapor profiles from on board GPS-receiver-data.

Geophysics
7. Studies of periglacial and glacial structures and permafrost conditions in ice free areas around Ny Ålesund area

Project Description: - Landform mapping of the periglacial and glacial structures using remote sensing / aerial photography and field observation - Genetic studies of ground ice using geochemical and stable isotope techniques - Studies of microbial life in extreme periglacial environment

glacial structures Mapping Geophysics microbial life Geochemistry Data management aerial photography periglacial structures Permafrost
8. Optical properties, structure, and thickness of sea ice in Kongsfjorden

Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.

UV radiation Geophysics Climate variability Climate remote sensing Sea ice Climate change Modelling Ice Oceanography Arctic Ice cores Atmosphere Ocean currents optical properties
9. Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements.

Changes in surface reflection at the arctic tundra at Ny-Ålesund, Svalbard (79 N) were monitored during the melting season 2002 using a low cost multispectral digital camera with spectral channels similar to channels 2, 3, and 4 of the Landsat Thematic Mapper satellite sensor. The camera was placed 474 m above sea level at the Zeppelin Mountain Research Station and was programmed to take an image automatically every day at solar noon. To achieve areal consistency in the images (which is necessary for mapping purposes) the images were geometrically rectified into multispectral digital orthophotos. In contrast to satellite images with high spatial resolution the orthophotos provide data with high spatial and high temporal resolution at low cost. The study area covers approximately 2 km2 and when free of snow, it mainly consists of typical high arctic tundra with patchy vegetation and bare soil in between. The spectral information in the images was used to divide the rectified images into maps representing different surface classes (including three subclasses of snow). By combining classified image data and ground measurements of surface reflectance, a model to produce daily maps of surface albedo was developed. The model takes into account that snow-albedo decreases as the snow pack ages; and that the albedo decreases very rapidly when the snow pack is shallow enough (20-30 cm) to let surface reflectance get influenced by the underlying ground. Maps representing days with no image data (due to bad weather conditions) were derived using interpolation between pixels with equal geographical coordinates. The time series of modeled albedo-maps shows that the time it takes for the albedo to get from 80% to bare ground levels varies from less than 10 days in areas near the coast or in the Ny-Ålesund settlement till more than 70 days in areas with large snow accumulations. For the entire study area the mean length of the 2002 melting period was 28.3 days with a standard deviation of 15.1 days. Finally, the duration of the snowmelt season at a location where it is measured routinely, was calculated to 23 days, which is very close to what is the average for the last two decades.

Digital camera Hydrography Mapping Geophysics Climate variability Orthophotograph Spatial trends Remote sensing Orthophoto Modelling Arctic GIS Spectral Temporal trends Ecosystems
10. Causes for GPR reflections in an alluvial permafrost environment

3-D GPR (ground penetrating radar) profiling of permafrost deposits and examination of their geocryologic and sediment properties for verification of GPR profiles. The scientific project has the following aims: To improve the understanding of how GPR (ground penetrating radar) reflections are generated in frozen ground; to reveal the main factors (geophysical and sedimentary) controlling electromagnetic reflection characteristics and their spatial continuity as examplarily studied along a continuous permafrost section, i.e. to distinguish between physical (dielectricity, conductivity and density) and sedimentary (ice/water content, grain size distribution, content of organic matter, texture) properties and estimate their proportionate quantity on the origin of the wave reflections.

ground penetrating radar Geology Geophysics Arctic Sediments Permafrost
11. Heat and mass transfer in the active layer

The active layer, the annually freezing and thawing upper ground in permafrost areas, is of pivotal importance. The moisture and heat transfer characteristics of this layer also determine the boundary layer interactions of the underlying permafrost and the atmosphere and are therefore important parameters input for geothermal or climate modeling. Finally, changes in the characteristics of the permafrost and permafrost related processes may be used as indicators of global ecological change provided the system permafrost-active layer-atmosphere is understood sufficiently well. The dynamics of permafrost soils is measured with high accuracy and high temporal resolution at our two sites close to Ny-Ålesund, Svalbard. Using these continuous data we quantify energy balance components and deduce heat transfer processes such as conductive heat flux, generation of heat from phase transitions, and migration of water vapor.

Water flux Geology Soils Geophysics Spatial trends Modelling Arctic Permafrost Temporal trends Energy flux
12. Seismological "Very Broad Band" Station (VBB-Station)

The new seismological broad band station KBS at Ny-Ålesund replaces a former WWSSN station operated by the Institute for Solid Earth Physics of the University of Bergen. Both instrumentation and data acquisition of the old station were inadequate to meet all the demands for highest data quality for today's modern seismological research. The high technical standard of the new stations instrumentation now fulfils all the requirements of a modern broad band station. Therefore this station is integrated into the international Global Seismological Network, GSN, for monitoring the world-wide seismic activity. Special interests focus on regional seismicity at and around Svalbard itself and along the ridges in the arctic ocean. KBS is an open station, e.g., any interested scientist or international organization os allowed to retrieve data of special interest. Data are routinely processed and stored at the IRIS Data Management Center in Seattle. Copies are also available at the Geoforschungszentrum Potsdam (GFZ).

Geology Seismology Geophysics Arctic
13. Long Term Monitoring of Solar Radiation in Ny-Ålesund

Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.

Atmospheric processes UV radiation Geophysics Climate Climate change solar radiation Arctic Atmosphere
14. Determination of stratospheric aerosols by balloon borne sensors

Stratospheric aerosols like Polar Stratospheric Clouds (PSCs) or volcanic aerosols are investigated by different types of balloon borne sensors in co-operation with the University of Nagoya, Japan, and the University of Wisconsin, Laramie, Wisconsin. The sensors flown are dedicated optilca particle counters (OPC) or backscatter sondes (BKS), respectively.

aerosols Atmospheric processes Ozone polar stratospheric clouds Geophysics Climate variability Climate Climate change balloon sonde optical particle counter Arctic PSCs Atmosphere
15. Validation of SAGE III satellite data

SAGE III was successfully launched on 10. Dec. 2001 on a Russian M3 rocket. It provides accurate data of aerosols, water vapour, ozone, and other key parameters of the earth's atmosphere. The science team of the SAGE III experiment at NASA has nominated the Koldewey-Station as an anchor site to contribute within the Data Validation Plan as part of the Operational Surface Networks. Data directly relevant to the SAGE III validation are aerosol measurements by photometers and lidar, as well as temperature measurements and ozone profiling by balloon borne sondes, lidar and microwave radiometer. Data will be provided quasi online for immediate validation tasks.

Atmospheric processes ozone UV radiation trace gases Geophysics Climate variability Climate Climate change aerosol water vapour Data management Atmosphere water vapor satellite validation
16. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
17. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV