Svalbard: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 4 of 4
1. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
2. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
3. Effects of Persistent Organic Pollutants (POPs) on the Immune Response of Glaucous Gull (Larus hyperboreus)

The present project includes one pilot study of wild adult glaucous gull (Larus hyperboreus) and one experimental study of glaucous gull chicks raised in captivity. The pilot study of adult gulls gave us enough blood and tissue samples to develop the methods needed for immune system analysis in the laboratory experiment. In the experimental study a total of 39 glaucous gull chicks were hatched and raised in captivity in Svalbard, Norway. The chicks were divided into two groups. One experimental group (20 chicks) was given food that mimicked the “natural” food found in the marine environment. The control group (19 chicks) was given “clean” food. After 56 days the chicks were sacrificed in order to collect samples for analyses of organochlorines (OCs) and immunocompetence measurements. The experimental group had 2.8, 3.9, 5.0, and 6.1 time’s higher concentrations of HCB, Oxychlordane, ?DDT, and ?PCB, respectively, compared to the control group at day 56. All chicks used in the experiment were immunised with various vaccines and sera in order to test their ability to respond against foreign antigens. The experimental chicks produced low levels of virus neutralising antibodies when tested against the herpes virus and reovirus. They produced higher levels of neutralising antibodies when tested to tetanus toxoid. There was, however, no difference between the experimental groups with regard to the mean antibody titres. The chicks in both groups also responded to the influenza virus by increasing the production of specific antibodies. However, the mean antibody titre in the exposed group was significantly lower than in the control group. The mitogen-induced response of blood lymphocytes to PHA and LPS was significantly higher in the exposed group compared to the control group. The specific response of blood lymphocytes to Con A, PWM, KLH, TET, and PPD was higher in the exposed group compared to the control group. However, do to high variance in the exposed group there was no significant difference between groups with regard to the lymphocyte response to these mitogens. The results from the present study indicate a toxic effect of OCs on the glaucous gull chicks, which induced a systematic activation of the immune system. Further work on data will be performed.

effects Biological effects Organochlorines PCBs Fish Long-range transport glaucous gull Persistent organic pollutants (POPs) Seabirds immune system Pesticides
4. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton