To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Sodankylä (FMI-ARC) as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.
The present project aims at the geophysical validation, from pole to pole and on the long term, of key ozone-related level-2 products (O3, NO2, BrO, OClO, and ClO) from GOMOS, MIPAS and SCIAMACHY onboard ENVISAT-1, and at a contribution to the maturation of the related level-1b-to-2 data processors. Application data processing will be used to convert level-2 data into a more suitable format for validation and scientific end-users. The respective performances of the ENVISAT data products, and their sensitivity to various relevant parameters, will be investigated from the Arctic to the Antarctic, over a variety of geophysical conditions. The impact of these performances on specific atmospheric chemistry studies will be emphasised. The pseudo-global investigations will rely on correlative studies of ENVISAT data with high-quality ground-based, in situ and balloon observations associated with the Network for the Detection of Stratospheric Change (NDSC).
The main objective is to establish a scientific basis for the detection of the earliest signs of ozone recovery due to Montreal protocol and its amendments. To achieve this we will select the best long-term ozone and meteorological data sets available (by ECMWF and NCEP). Ozone data will be studied by using advanced multiple regression methods developed in this project. Meteorological data would allow to determine the dynamical changes and trends and assess their role in re-distribution of stratospheric ozone in recent decades and in order to force the Chemical Transport Models to assess the relative roles of chemistry and transport in ozone changes. Finally, the synthesis of the key objectives will improve the attribution of observed ozone changes to anthropogenic influences and to the variations in a natural atmosphere.