Scandinavia: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Scandinavia as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 27 Next
1. Measurements of gamma-radiation in the environment

Measurements of gamma-radiation in the environment (from ground to cosmos). Radioactivity in Intensive Net is measured on the soil surface at 28 sites in Sweden. The measurements are continuous and sound the alarm if radioactivity increases. Measured is the dose rate of gamma radiation. Radioactivity in Extensive Net is concerned all municipalities in Sweden which has got one instrument for gamma radiation measurement and each county board has got two. Every seventh month they measure radioactivity at two to four predefined spots as reference measurement. Radioactivity in Air is conducted at five stations with air filter sampling and analysis of radioactivity maintained by Swedish Defence Research Agency (FOI). Out of these stations Umeå and Kiruna are located in northern Sweden.

Atmosphere crops Cs-137 Exposure Food gamma radiation Long-range transport Mapping natural radiation nuclear radiation Radioactivity Radionuclides Reindeer Sediments Soils Spatial trends Temporal trends
2. Deposition on high altitudes

The aim of this project is to measure the airborne deposition of acidifying and eutrophicating compounds (gaseous and particulate reduced and oxidised nitrogen and sulphur compounds) in air and precipitation over Sweden at high altitude. The results from this programme is used to calculate and model basic processes governing sources, atmospheric transport and sinks of atmospheric trace constituents. The observations are made at three stations. The measurements include particulate reduced and oxidised nitrogen and sulphur compounds in gaseous and particulate form in air and precipitation.

acidification air particles Arctic Atmosphere Contaminant transport deposition in forest deposition in the open fied Eutrophication Local pollution Long-range transport Mapping Modelling precipitation Spatial trends Temporal trends throughfall
3. Pollutants in air, monthly values, Precipitation chemistry, monthly sampling.Ozone measurements, passive sampling.S- and N-components in air with passive sampling.

 

This project is now part of the project: Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring Programme. National Environmental Monitoring Programme. The PMK Network is part of the national network for deposition measurements. The aim is (i) a long-term monitoring of concentration and deposition of selected air transported compounds caused acidification and eutrophication in different parts of Sweden; (ii) to generate knowledge about long-term variation in the field deposition, (iii) to give the background data from low polluted areas for calculation of pollutants deposition in more polluted areas the monitoring of pollutants in air and precipitations are proceed. Ozon and air samples for analysis of sulphur and nitrogen compounds, HCl as well as basic metal ions (Na, K, Ca, Mg, are taken on a monthly basis in air and precipitation. Ozone, as well as sulphur and the nitrogen compound particles are measured in air, and sulphur and nitrogen compounds, base cations, pH and electro-conductivity in precipitation.

acidification Arctic Atmosphere Contaminant transport Data management Dioxins/furans Eutrophication Exposure Local pollution Long-range transport Mapping ozone precipitation Temporal trends
4. Pollutants in air, daily values

 

This project is now part of the project : Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.

acidification air pollution Arctic Atmosphere Contaminant transport Data management Dioxins/furans EMEP Eutrophication Long-range transport Mapping Modelling ozone precipitation Spatial trends Temporal trends
5. Metals in precipitation, Mercury in air

National Environmental Monitoring Programme in Sweden, in the "Air" programme area. Eleven chemical parameters are measured in precipitation every month, and in the air Hg (TGM and TPM) is measured weekly. Measurements are carried out at 4 stations in Sweden and one in Finland.  The project is part of an international network that follows the variations in the levels and deposition of heavy metals, particularly mercury, in the Arctic region.

Arctic As Atmosphere Cd Co Contaminant transport Cr Cu Data management Heavy metals Hg Long-range transport Mn Ni Pb Temporal trends TGM TPM V Zn
6. Continual monitoring of the ozone layer.

National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.

Arctic Atmosphere Climate Data management Exposure Modelling national monitoring ozone UV radiation
7. Metals in mosses

National Environmental Monitoring Programme in Sweden. The objective is to follow the deposition of heavy metals over Sweden by the analyses of their concentration in two selected species of moss. The selected species are: Red-stemmed Feather-moss (Pleurozium schreberi) and Mountain Fern Moss (Hylocomnium splendens). Preferred specie: Red-stemmed Feather-moss (Pleurozium schreberi). Metals adsorbed by mosses almost exclusively come from the air and metal concentration in mosses are therefore seen as a proxy for metal deposition. Analysed elements are: Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, Zn (2015). The moss samples are taken from over 600 stands across Sweden.

Al As Atmosphere Biological effects Cd Cr Cu Fe Hg Hylocomnium Local pollution Long-range transport Mapping Mn Mo mosses Ni Pb Pleurozium Spatial trends Temporal trends V Zn (2010)
8. Persistent organic pollutants in air and precipitation

National Environmental Monitoring Programme in Sweden. Measurements of persistant organic pollutants in air and precipitation are carried out at Råö, Hallahus, Aspvreten, and in Pallas (Northern Finland). The monitoring programme includes measurements of: polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), some pesticides (HCH, DDT) and polybrominated diphenylethers (PBDE).

Arctic Atmosphere Atrazin Contaminant transport Data management DDT DECA Diuron Endosulfan Fenantren HBCD HCB HCH Heptaklor Isoproturon Local pollution Long-range transport Mapping Organochlorines PAHs PBDE PCBs Persistent organic pollutants (POPs) Pesticides PFOA PFOS Polybrominated diphenylethers Temporal trends
9. FUVIRC-Finnish Ultraviolet International Research Centre

FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.

Arctic Atmosphere Biodiversity Biological effects Biology Climate change Ecosystems Forest damage Geophysics Human health ozone Populations Reindeer Temporal trends UV radiation
10. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
11. Pallas-Sodankylä, GAW station, Northern Finland

GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.

Atmospheric processes Ozone Arctic haze UV radiation Radioactivity Climate variability Long-range transport Climate Acidification Contaminant transport Climate change Radionuclides Arctic Atmosphere Temporal trends
12. External radiation dose rate monitoring in Finnish Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.

external radiation monitoring Radioactivity Atmosphere
13. Continous monitoring of gammanuclides, strontium (beta) and tritium in deposition in Finnish Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.

tritium strontium Radioactivity caesium Radionuclides fallout nuclides Atmosphere iodine deposition
14. Monitoring of airborne radioactive substances in Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. STUK is responsible for monitoring of radioactivities in atmosphere. STUK operates a network of eight aerosol samplers from which three are located in Finnish, Lapland at Rovaniemi, Sodankylä and Ivalo. The sampling is done either weekly or bi-weekly. Gammaspectroscopic measurements are done in the laboratory in Rovaniemi. The lowest activities are detected at microBq/m3 level.

sodium. beryllium Radioactivity caesium airborne radionuclide monitoring Radionuclides Atmosphere iodine
15. Oulanka, EMEP station, Northern Finland

Monitoring of air quality and deposition.

Atmospheric processes Ozone Heavy metals Long-range transport Acidification Contaminant transport Atmosphere Temporal trends
16. National deposition monitoring, Northern Finland

Monitoring of direct deposition. Project is run by Finnish Meteorological Institute (FMI).

Atmospheric processes Heavy metals Long-range transport Acidification Arctic Atmosphere Temporal trends
17. Pallas, AMAP station, Northern Finland

The overall objectives for operation of the station will follow those defined in the AMAP programme. The main interests are the levels and trends of airborne toxic pollutants (POPs and heavy metals) in northern Fennoscandia.

Atmospheric processes Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere Temporal trends
18. Studies of the Polar Cap Ionosphere

The experiments comprise automated receiving systems for 150 and 400 MHz transmissions from NIMS (formerly known as NNSS) satellites that are used to determine the ionospheric electron content by means of the differential carrier phase method. Receivers are located at Ny-Ålesund, Longyearbyen, Bjørnøya and Tromsø. Measurements of electron content from the receiver network are inverted in a tomographic reconstruction algorithm to yield two-dimensional images of electron density over a wide region. The observations are used to investigate the dynamical processes responsible for the spatial structuring of the plasma distribution in the polar ionosphere. These tomographic images are complementary to measurements made using the EISCAT and EISCAT Svalbard radars and auroral optical instruments located on Svalbard.

Atmospheric processes Geophysics Ionosphere tomography Atmosphere
19. UFTIR: Time Series of Upper Free Troposphere observations from a European ground-based FTIR network

The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.

Atmospheric processes Sources Ozone FTIR Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends profile inversions
20. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends