Russia: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Russia as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 11 of 11
1. Marine coastal observations

Monitoring and forecast of the sea and atmosphere state in the coastal area, support of safety of navigation and marine activities. Main gaps: Initial data before 1977 have not been digitized.

Atmosphere Oceanography
2. Overview of the State of the Arctic Hydrometeorological Observation Networks

In the context of the tasks SAON SG steering group, the topology of the Arctic hydrometeorological observation network can be presented in the following concise form: 1. Agrometeorological; 2. Actinometric; 3. Aerological (radiosounding); 4. Water balance; 5. Hydrological on rivers; 6. Hydrometeorological on lakes; 7. Glaciological; 8. Meteorological; 9. Marine hydrometeorological (in the coastal zone, river estuaries, open areas including marine vessel and expeditionary); 10. Avalanche; 11. Ozone measuring; 12. Heat balance; 13. Atmospheric electricity; 14. Water, soil and snow surface evaporation; 15. Chemical composition of water and air. Observation network data are operationally transferred to Roshydromet’s data telecommunication network except for those indicated in items 4, 7,12-15. The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones. Meteorological observations are considered as the main type of observations. To establish a common database and control timely and complete collection and distribution of information, a catalog of meteorological bulletins is being created to be the plan of hydrometeorological information transfer from the sources to Roshydromet’s data telecommunication network to distribute among information recipients The catalog of meteorological observations is maintained by State Institution “Hydrometeorological Center” and State Institution “Main Radio-Meterological Center”. Electronic version of the catalogs of meteorological bulletins is maintained by State Institution “Main Radio-Meterological Center” and located on the Internet site http://grmc.mecom.ru. The catalog of meteorological bulletins contains the following information: − Name of Roshydromet’s subordinate Federal State Institution and observation point to input data into the automated data system; − shortened title of the hydrometeorological bulletin in proper format; − observation data coded form; − hours of observation; − data transfer check time; − number of observation points taking part in one bulletin; − lists of five-digit indices for observation points. Changes are entered into the catalogs of meteorological bulletins quarterly. WMO’s WWW is considered as the main foreign information consumer. The lists of WMO correspondent stations are given in WMO publications # 9, vol. C, part 1 (Catalog of Meteorological Observations), vol. A (Observation Stations). 2. SAON is expected to stimulate the process of improving configuration and completeness of the circumpolar region monitoring system as a potential tool for international consolidation of the opportunities available in the functioning of observation networks in order to improve national standards quality and ensure more complete compliance of the Arctic research strategies proposed to socioeconomic needs and interests of Arctic countries 3. The catalog of points and main observations is given in Table 1 (see Fig. 1). The maximum development of the Russian hydrometeorological observations in the Arctic was reached in early 1980s, when information was received from 110 stations. In subsequent years, the number of stations decreased more than twice (Fig. 2). The current level of observations is determined by the functioning of a network consisting of 49 points two of which are automatic weather stations. Three points are temporarily removed from operation. In short term, 8 automatic stations are expected to be opened; while in medium and long term, the number of manned observation points will increase up to 52-54, and the number of automatic ones – up to 20-25. For the manned network, the meteorological program includes a set of eight-hour observations of: atmosphere pressure, wind parameters, air and soil temperature, relative humidity, weather phenomena, cloud height, visual range, precipitation, while for automatic weather stations – a set of reduced 4-hour observations. The marine hydrometeorological program includes coastal observation of temperature, water salinity (density), sea-level variations, heave, ice distribution (and thickness) as well as meteorological parameters under the change of observation conditions from hourly to ten-day observations. The river hydrological program is quite similar to the marine one. It does not include observations of water density, however, they can be included for the stations having a special status, measurement of water discharge, alluvia and chemical composition of water. The programs will include hourly and ten-day observations. The aerological program will include 1-2 –hour measurements of: atmosphere pressure and wind parameters on selected isobaric surfaces. Actinometric observations include measurement of 5 components of atmosphere radiation balance in case of the full program and measurement of total radiation under a reduced program. Network type: The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones.

Oceanography Atmosphere Ecosystems
3. Observation of Greenhouse Gases using Aircraft and Tower Network in Siberia

Cooperation with: ・Institute of Atmospheric Optics, Tomsk, Russia ・Permafrost Institute, Yakutsk, Russia ・Central Aerological Observatory, Moscow, Russia ・Institute of Microbiology, Moscow, Russia

Climate Pollution sources Atmosphere
4. Network of terrestrial meteorological observations

Monitoring and forecast of the atmosphere state and climate change. Main gaps: Initial historical data from specific stations have not been digitized It is needed to control and recover gaps in historical data from specific stations.

Atmosphere
5. Aerological observation network

Monitoring and forecast of the atmosphere state and climate change. Main gaps: Initial historical data before 1961 from specific stations have not been digitized. A part of metadata have not been digitized

Atmosphere
6. Oceanographic observations

Monitoring and forecast of the sea and ocean state, support of safety of navigation and marine activities. Main gaps: Additional control is needed for historical data, especially with regard to hydrochemical parameters.

Oceanography Atmosphere
7. 'NAR-2000' expedition

The 'NAR-2000' expedition was performed during August-September 2000. The overall programme of work includes: - monitoring of pollution in air, waters and bottom sediments of freshwater lakes, soils and terrestrial vegetation - soil/botanical studies - visual and remote sensing (aerial photos and video surveys) studies of damage to soil and vegetation cover. Samples of river water and bottom sediments from 25 freshwater bodies and samples from 16 terrestrial sites in the area of the Varandey and Toravey oil fields were taken for chemical analyses.

Biological effects Organochlorines PCBs Soils Catchment studies Heavy metals PAHs Pollution sources phenols Petroleum hydrocarbons Forest damage soil damage Persistent organic pollutants (POPs) Local pollution Sediments Atmosphere Oil and Gas Temporal trends detergents
8. Monitoring pollution of air and precipitation in Arctic Russia

Stationary systematic observations of pollution in atmospheric air and precipitation. During 2000, observations of contaminant levels in atmospheric air in the cities of Murmansk, Nickel, Monchegorsk, Salekhard and Norilsk were conducted. Monitoring of sulphur and nitrogen compounds in air and precipitation was continued at the above locations and also at Yaniskosky (Kola peninsula) and Pinega (Arkhangelsk region) under the EMEP programme framework. Observations of CO2 were continued at the Teriberk station. Observations of the chemical content of atmospheric precipitation were carried out at 5 stations in the Arctic network of stationary observations: in the Krasnoshelye settlement area (Kola peninsula), Naryan-Mar (Pechora river area), Dikson Island, Turuhansk (Yenisey river area), and Kusyur settlement area (Lena river). Under a joint Russian-Canadian-AMAP project, monitoring of POPs and (from 2001) mercury in air at the Amderma site is conducted.

Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Persistent organic pollutants (POPs) Local pollution Pesticides Atmosphere EMEP air monitoring urban air quality
9. Mercury Measurements at Amderma, Russia

This project aims to establish continuous Total Gaseous Mercury (TGM) measurements at Amderma, Russia to provide circumpolar data in concert with international sampling efforts at Alert (Nunavut, Canada), Point Barrow (Alaska, USA) and Ny-Ålesund (Svalbard/Spitsbergen, Norway). The objectives of this project are to determine spatial and temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic in order to assist in the development of long-term strategies for this priority pollutant by: A) measuring ambient air TGM concentrations in the Russian Arctic; B) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; and C) studying the circumpolar behaviour of mercury by comparison with data from other polar sites.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
10. Northern Contaminants Air Monitoring: Organochlorine Measurements

The objectives of this project are: A) to determine whether atmospheric concentrations and deposition of priority pollutants in the Arctic are changing in response to various national and international initiatives by: i) continuing to measure the occurrence of selected organochlorines in the arctic atmosphere at Alert, NWT for a period of three more years (measurements started in 1992), in parallel with identical measurements in western Russia at Amderma; ii) sampling at the Kinngait (Cape Dorset) station in 2000/2001 for the purpose of detecting change in the eastern Canadian Arctic by comparison with observations made four years earlier (1994-1996) at this site; and iii) analyzing and reporting data from Alert, Tagish, Kinngait and Dunai Island thereby providing insight into pollutant trends and sources. B) Ensuring the effective utilization of information at the international negotiating table in order to achieve the appropriate restrictions on release of pollutants of concern for the arctic environment by: i) contributing to the next assessment arising from the second phase of the Northern Contaminants Program (Canada) and specifically, the revised Assessments on POPs and Heavy Metals as part of the Arctic Monitoring and Assessment (AMAP) Program Work Plan; and ii) advising Canadian negotiators in preparing reasonable, practical strategies of control.

Organochlorines PCBs PAHs Long-range transport Contaminant transport Arctic Persistent organic pollutants (POPs) Data management Pesticides Atmosphere
11. New Persistent Chemicals in the Arctic Environment

The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.

Sources PCAs BDPEs Pollution sources Exposure monitoring chloroparaffins Sediments Pesticides SCCPs Human intake Marine mammals new chemicals polychlorinated naphthalenes Pathways Organochlorines PCBs chlorinated paraffins Long-range transport brominated diphenyl ethers Spatial trends HAAs Arctic PCNs Persistent organic pollutants (POPs) synthetic musks haloacetic acids Atmosphere polychlorinated alkanes