To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Norwegian Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
These observations was originally funded through IPY projects (iAOOS-Norway and IPYTHORPEX), they are now maintained by the Norwegian Meteorological Institute. The observations at Bjørnøya started April 2008, Jan Mayen October 2008 and Hopen is scheduled 2009.
Objectives are:
Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.
To assess the effects, levels and trends of hazardous substances in marine sediment and biota. The indicator organisms include blue mussel, dogwhelk, cod and plaice. The monitoring sites are mostly coastal and the frequency of sampling is mostly annually for biota and every 10-15 years for sediment. Main gaps: Protected areas and offshore monitoring are generally not included under the CEMP but offshore monitoring is somewhat covered by. IMR/NIFES programmes. Not all substances under EU’s Water Frame Work Directive and Marine Strategy Directive are monitored regularly. Biological effects monitoring is lacking except for IMPOSEX investigations.
During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.
Distribution • What is the current distribution of coral colonies in the North Sea? • Where are coral colonies located on the structures? • Do any colonies show evidence of exposure to drill cuttings? Monitoring & Environmental Recording • What hydrodynamic regime and levels of suspended particulate material are coral colonies exposed to? • Does the coral skeleton retain an archive of any past contamination? • Does skeletal growth vary over time and does this correlate with any past contamination? • How variable is the rate of coral growth and does this correlate with any environmental variables? Environmental Sensitivity • What effect does increased sediment load have on coral behaviour and physiology? • What effect does exposure to discharges (e.g. cuttings and produced water) have on coral behaviour and physiology? • Are such exposures realistic in the field?
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.
Monitor the abundances of zooplankton at two transects along the coast 4-8 times a year, and in the Norwegian Sea in May and July-August
Monitoring the levels of radioactivity in water, sediments and biota
Monitor the abundance of herring larvae on the Norwegian Shelf in April. Report the nos. herring larvae found to the ICES Northern Pelagic and Blue Whiting WG
As part of plankton and fisheries surveyes samples for nutrients measurements are collected. This is part of our routine monitoring of the marine environment.
The overall objective of MAIA is to develop an inexpensive, reliable system based on coastal sea-level data for monitoring the inflows of Atlantic Water to the northern seas. Available observation systems, including stan-dard tidal stations, will be used to obtain transport estimates with a time resolution of less than a week and show that the method is generic and can be applied to a similar monitoring of other regions.
Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.
Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.
To develop the next-generation Navy operational ice thickness and movement model.