To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Norway as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Connect public health laboratories and institutes throughout the circumpolar north for the purposes of monitor infectious diseases of concern. Main gaps: russia
Coastal Module of GOOS
Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.
Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.
During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.
The aim of this research program is to examine the response of animal populations to environmental variability at different spatial scales. We attempt to determine how individuals respond to the spatial heterogeneity of their environment, and what are the consequences of this response for the dynamics of subdivided populations. Specifically, we consider an ecological system involving biotic interactions at three levels: seabirds, their tick _Ixodes uriae_, and the microparasite _Borrelia burgdorferi_ sensu lato (Lyme disease agent). Colonies of seabirds represent discrete entities, within and among which parasites can circulate. Our previous work on this system in the norwegian arctic has enable us to show that (1) host dispersal can be affected by local conditions, (2) seabird tick populations are specialised among different host species, namely between sympatric kittiwakes _Rissa tridactyla_ and puffins _Fratercula arctica_, (3) in the kittiwake, females transmit antibodies against _Borrelia burgdorferi_ when their chicks have a high probability to be exposed to the tick vector. We propose to combine different approaches, incorporating field surveys and experiments and population genetic studies (of hosts and parasites), in order to better understand the role of local interactions and dispersal in the dynamics of such a system. The research program implies collaborations with researchers from other french groups, as well as with Canadian (Queen’s University) and Norwegian colleagues (from NINA and the University of Tromsø).
The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.
A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.
The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
Objective: to collect climatology information on the seasonal and year-to-tear variability of stratospheric CFCs, water vapour and atmospheric electrical parameters.
Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden
Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.
Polar stratospheric clouds play a key-role in polar ozone destruction. Cold temperatures in the vortex allow formation of these clouds. Depending on the PSC-type different formation-temperatures have to be reached. Synoptic temperatures do not always fall to these formation-temperatures, but waves in the atmosphere can lead to additional cooling of several 10 K, which allows PSC-formation. Whereas the wave-activity at the ESRANGE is very high due to hilly surrounding area, the orographic wave-activity at ALOMAR is expected to be rather small. Waves with long wavelengths will be present at both stations simultaneously. Coordinated measurements of temperature and aerosols will show both the large-scale wave-part and also the locally induced wave-part. Such measurements should allow identification of the different wavelngth scales and in addition contribute to a better estimate of the importance of wave-induced clouds for PSC-formation.
During the past years, atmospheric research in high latitudes has been focussed on processes causing ozone loss in the polar winter lower stratosphere1). Recent research efforts also dealt with regions up to the lower mesosphere, and studied the effects of charged particle precipitation on NO and ozone2)-5). However, the measurement techniques and hence the database for studying such processes in this altitude range are very limited. The Airborne SUbmillimeter Radiometer ASUR6),7) of the Institute of Environmental Physics of the University of Bremen has recently been equipped with a high-resolution spectrometer that will enable the retrieval of vertical profiles of ozone up to an altitude of about 65 - 70 km. Its measurement capabilities comprise also several other species of interest, especially NO. This makes the measurement technique particularly suitable for upper stratospheric/lower mesospheric studies. The lidar at ALOMAR is capable of measuring highly resolved vertical profiles of ozone up to an altitude of 60 km, thus giving the rare opportunity for intercomparison and validation studies in an altitude range reaching from the lower stratosphere to the lower mesosphere. Therefore we propose to perform simultaneous ozone measurements of the ASUR instrument with the ALOMAR lidar, supported by launches of ozone sondes.
Noctilucent clouds (NLC) remain a fascinating phenomenon of the upper atmosphere to study. The questions about the typical particle density and particle size distribution within a NLC are very prominent ones, to which a number of answers have been given, though some of the answers contradict each other. The parameters of particle size distributions can be derived from groundbased lidar measurements of the spectral dependence of the volume backscatter coefficient of an NLC. Such studies have been performed during a number of NLC events by e.g. the ALOMAR Rayleigh/Mie/Raman (RMR) lidar (von Cossart et al., GRL, 26, 1513, 1999). A drawback of these experiments is the wavelength limitation of the RMR lidar, the shortest wavelength of which is 355 nm. At this wavelength, the sensitivity of the lidar to particles with sizes smaller than, say, 25 nm is minimal. Because a considerable part of the entire particle population may have sizes below that threshold, a lingering question remains whether or not this drawback matters for typical NLC distributions. Using the ALOMAR ozone lidar, a measurement of the NLC volume backscatter coefficient at 308 nm becomes possible. Due to the l-4 -dependence of the backscatter coefficients, the latter are almost a factor of 2 larger at this wavelength than at 355 nm. For this reason and in order to gain a fourth wavelength to the spectral distribution, we aim at using the ozone lidar for the outlined project.
Waves play a major role for the momentum and energy transport in the middle atmosphere [Fritts and van Zandt, 1993] by modifying the local temperature field as well as the general circulation when the waves reach the saturation level and break [Holton, 1983; Fritts, 1984]. The MACWAVE rocket campaign is investigating the wave field in polar latitudes during summer and winter. To learn more about the horizontal structure of the wave field, it is important to measure at more than one station. For the monitoring of the vertical transport by the waves, measurements over a large height range are necessary. The combination of lidars, radiosondes and falling spheres will cover the region from the ground up to approximately 105 km. When comparing data, it is important to take into account the different measurement principles and integration times. The rocket will show small scale variations whereas the lidar permits a continuous monitoring of the temperature and wave situation
To investigate arctic foxes physiological adaptations to life at high latitudes. Resting and running metabolic rates, body weight, food intake, body core temperature, heart rate, and blood parameters were examined during different seasons and during periods of food deprivation.
To evaluate temporal variation in arctic fox numbers and their food resourses in the Kongsfjorden area. The number of foxes captured per 100 trap-days are used as an index of fox density termed "Fox Capture Index". The observations of denning activity i.e. observation of number of arctic fox litters and litter size at den are termed "Fox Den Index" as a second index of fox abundance. A third index is termed "Fox Observation Index". This index is based on both observations of adult foxes seen away from breeding dens pr 100 h field work and reports on request from scientists and local people on observations of adult foxes during summer. In addition, reports on observation of fox tracks in the study area were collected in 1990-2001 as a fourth index, which were called "Fox Track Index". The field census are conducted for 10 days starting at the end of June. All dead foxes in the area should be collected.