To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Norway as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.
Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.
In 1990, the Directorate for Nature Management (DN) established an area for integrated monitoring within Børgefjell National Park, Røyrvik, N Trøndelag. Studies of vegetation-environment relationships in the area was performed by NINA. The area includes both subalpine birch forest and low alpine heath. The new established vegetation investigation included all together 80 different species. This material was processed numerically by using multivariate methods. Indirect gradient analyses were performed using Detrended Correspondence Analysis (DCA) and Local Nonmetric Multidimentional Scaling (LNMDS). Direct gradient analyses were performed by using rescaled hybrid Canonical Correspondence Analysis (CCA). Non-parametric correlation analyses, Kendall’s , were performed between environmental parameters and DCA axis values. The results of the numerical and statistical processing were used partly to provide a description of the vegetational structure in the material and partly to quantify how much each ecological parameters contributed to determination of vegetational structure. This work shows the species distribution along various complex gradients; moisture, nutrient conditions, light etc. The investigation is primarily designed to study vegetation dynamics along these gradients and whether changes in the number of species can be related to changes in physical, biotic and, not least, chemical parameters. Variance analysis was performed to assess to what extent the sample plots tends move in a determined direction from 1990 to 1995. The variation between the years were not significant along the primary complex gradients, but there were a significant displacement of species along the following gradients. The most important species were: Vaccinium vitis-idaea, Melampyrum sylvaticum and Hylocomium splendens), which showed an increase and some cryptogams like Brachythecium reflexum, B. salebrosum and Cladonia ecmocyna which declined.
Levels of selected contaminants have been determined in sediment, blue mussel, seeweed and fish from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg in northern Norway. The following contaminants were included in the study: PAH, PCB, 5CB, HCB, OCS, HCH, DDT, DDE, DDD, TBT, Cd, Cu, Hg, Pb, Zn and Li. A few samples were also analysed for dioxines (PCDD and PCDF), non-ortho PCBs and PCN. The results were compared with the Norwegian State Pollution Control Authorities classification system for marine sediments (Molvær et al. 1997). Elevated (and in most cases very high) levels of most of the measured contaminants were found in all the investigated harbour areas.