To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified NERC Arctic Research Station (Harland House) as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The project aims to examine the effects of latitudinal temperature change on muscle function in amphipod crustaceans. As temperature has a profound effect on the ability of muscles to contract and produce force/power for movement, we are interested to see if there is any compensation for the effects of temperature between amphipod populations living at different latitudes. To this end we are studying Gammarid amphipod species due to their wide geographical distribution along the coast of North West Europe from temperate conditions in the Northern Atlantic (at approx 15°C in the summer) to polar conditions in the Arctic (at -1°C in the summer). In particular we are interested in the effects of temperature gradients on heavy chain myosin genes, as these genes regulate critical aspects of muscle contraction and can be influenced by changes in environmental temperature by switching from one gene variant to another. During our visit to Ny-Ålesund we hope to collect at least 3 different species of gammarid amphipod, including Gammarus locusta, G. zaddachi, and G. oceanicus to represent populations from the northerly limit of their latitudinal range. The muscle tissue will then be examined for sequence variations in specific active regions of the myosin genes that are known to influence the production of force. Sequence variation will be compared to the data collected from populations in the UK and in Tromso, Norway (70N). Ultimately the results will be correlated to the genetic diversity of the amphipod populations to assess the evolution of myosin genes in animals with a wide distribution pattern and inherent adaptability to temperature change.
Diversity of cyanobacteria and eukaryotic microalgae in subglacial soil (Ny-Ålesund, Svalbard) Study of the reinvasion and establishment of plant and animal life after ice retreat is one on the most important ecological problems. In the past, many Arctic and Antarctic research projects have dealt with primary succession processes and the effects of climate warming. Cyanobacteria and algae are widespread in polar wetlands and soils and produce visible biomass, which represents a considerable global pool of fixed carbon. Together with associated microorganisms, they are involved in energy flow, mineral cycling, weathering processes and the biological development of the polar landscape. The processes primary succession by cyanobacteria and algae are influenced by many ecological factors. However, two of them (1) aerobiological and water inputs of viable cells and spores into deglacaited areas and, (2) ability to endure freeze-dry desiccation for long periods of time (perennial character) play a detrimental role in the processes of primary succession. The diversity and abundance of cyanobacteria and eukaryotic microalgae will be studied in the vicinity of Ny-Ålesund, Southern part of Kongsfjorden, Spitsbergen, 79°N in the following habitats: subglacial soil (samples will be collected from below glacier ice) freshly deglaciated soil (close to glacial margins - up to 50m) glacial ice surface (cryoconite, streams flowing on ice surface, etc.) soils of habitats deglaciated many years ago (more than 50 years ago) The collection of these samples will be focussed on soils that have not been in contact with environment above the ice.
Please contact Dr Jelte Rozema.
Mosses and lichens are important components of arctic ecosystems as well as being an internationally important component of the biodiversity of the British Isles and Scandinavia. They are typically associated with nutrient poor ecosystems and are often eliminated with increased supplies of nitrogen. This study is part of a programme examining the impact of elevated nitrogen in nutrient poor ecosystems on mosses and lichens. This particular study will examine the contribution of airborne nitrogen in the form of ammonia to the growth of mosses in the arctic tundra in Kongsfjord. Breeding colonies of seabirds deposit large quantities of guano, which can be major sources of nitrogen as well as heavy metals (Headley 19xx) and other contaminants in the marine ecosystems. The nitrogen in fish and other organisms high up in the marine food chains have higher concentrations of the heavier stable isotope of nitrogen called 15N. The ratio of this isotope to the usual isotope of nitrogen (14N) can be used as a marker as to the relative contributions of different forms of nitrogen that are being utilised by an organism. By taking samples of moss at different distances from seabird colonies and analysing these and the soil and guano for the concentrations of the two stable isotopes of nitrogen (15N:14N ratio) the relative contributions of nitrogen from the soil and atmosphere can be determined. This can then be utilised along with details of the relative abundance of the mosses along transects away from seabird colonies to ascertain how important atmospheric ammonia is in altering the species composition of moss communities.
Please contact Dr Clare Robinson
Please contact Dr Cornelius Lutz
In 2001 we were granted an LSF award for work on dissolved organic nitrogen in arctic ecosystems. In collaboration with Bjorn Solheim and Christina Wegener of the University of Tromso, we studied (a) the DON and DIN content of a range of soils around Ny Alesund and (b) the relative uses of nitrogen fixation and DON in a defined range of communities. We established a long term experiment at Stuphallet on dry tundra, where we made additions of nitrogen to fixed quadrats. The nitrogen additions were of nitrate, ammonium, glycine and glutamate at 10 kg ha-1. This is the first long-term experiment where organic N additions have been made to tundra. Our hypothesis is that DON is a preferred N source for tundra angiosperms. Within 10 days of application of the N in 2001, there were no significant changes in plant chlorophyll content or N content, not surprisingly as the plants were fruiting and end-of-season N retranslocation and leaf loss were in progress. This application is to make measurements on these plots to test the hypothesis after one year, and to make further applications.
The high Arctic contains delicate, relatively pristine ecosystems that are increasingly subject to exported aerial pollution (e.g. nitrogen) and higher than average climatic temperature change. Together these factors may potentially change important biogeochemical processes (e.g. the cycling of carbon and nitrogen) and ecosystem dynamics. This project involving the University of Nottingham, The British Geological Survey and IACR Rothamsted is now entering its second field season. The project concentrates on the release and the subsequent fate of N, entering the tundra ecosystem, as a pulse during the spring thaw. The questions we propose addressing are (i) how important is this event in transferring enhanced N deposition to tundra ecosystems, and how much is lost as run-off to lacustrine and inshore marine environments, (ii) how does enhanced N affect the carbon cycle (i.e. plant growth, decomposition processes) and (iii) what is the impact on soil N mineralizationimmobilization dynamics. Two plot experiments have been set up at contrasting vegetation sites around Kongsfjorden (Brandalspyntyn and Ny-London). We have simulated the release of N from the snowpack by applying 15N label as the snow has melted. An accurate audit regarding the fate of this snowpack N can then be made (i.e. does it remain in the soil, enter the tundra flora and soil microbiology or is it lost from the system). In addition, using techniques for combined 18O+15N analysis of nitrate, we can distinguish between atmospheric- and soil-derived nitrate. This will allow us to assess and source losses of N from the tundra during the brief summer growing season. These complementary approaches will provide a quantitative understanding of the fate of deposited N in the pristine Arctic environment. The overall aim will be to parameterize an N-flux model for this important ecosystem.
The high Arctic contains delicate, relatively pristine ecosystems that are increasingly subject to exported aerial pollution (e.g. nitrogen) and higher than average climatic temperature change. Together these factors may potentially change important biogeochemical processes (e.g. the cycling of carbon and nitrogen) and ecosystem dynamics. This project involving the University of Nottingham, The British Geological Survey and IACR Rothamsted is now entering its second field season. The project concentrates on the release and the subsequent fate of N, entering the tundra ecosystem, as a pulse during the spring thaw. The questions we propose addressing are (i) how important is this event in transferring enhanced N deposition to tundra ecosystems, and how much is lost as run-off to lacustrine and inshore marine environments, (ii) how does enhanced N affect the carbon cycle (i.e. plant growth, decomposition processes) and (iii) what is the impact on soil N mineralizationimmobilization dynamics. Two plot experiments have been set up at contrasting vegetation sites around Kongsfjorden (Brandalspyntyn and Ny-London). We have simulated the release of N from the snowpack by applying 15N label as the snow has melted. An accurate audit regarding the fate of this snowpack N can then be made (i.e. does it remain in the soil, enter the tundra flora and soil microbiology or is it lost from the system). In addition, using techniques for combined 18O+15N analysis of nitrate, we can distinguish between atmospheric- and soil-derived nitrate. This will allow us to assess and source losses of N from the tundra during the brief summer growing season. These complementary approaches will provide a quantitative understanding of the fate of deposited N in the pristine Arctic environment. The overall aim will be to parameterize an N-flux model for this important ecosystem.