Koldewey Station, Ny-Ålesund/Spitsbergen: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Koldewey Station, Ny-Ålesund/Spitsbergen as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 2 of 2
1. IOANA

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere
2. The surface energy budget and its impact on superimposed ice formation (SEBISUP)

During the spring/summer transition, sea ice and snow properties change considerably in response to warming and the eventual reversal of temperature gradients within the snow and ice. Snow melt water percolates down towards the colder snow/ice interface, where it refreezes to form superimposed ice. On sea ice this process occurs probably longer and more intensive than on land, because throughout the summer the ice and underlying seawater is always colder than the snow. In Antarctica superimposed ice may actually form layers of some decimeters in thickness. The objective of this study is to investigate the main processes and boundary conditions for superimposed ice formation, in recognition of its importance for Antarctic sea ice, and its possible importance for Arctic sea ice in case of environmental changes due to future climate change. This will be performed by means of modeling as well as by combined measurements of the temporal evolution of snow and ice properties and the energy budget.

Snow and ice properties Sea ice Climate change Modelling Ice Ice sheets Arctic Ice cores Superimposed ice formation