Iceland: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Iceland as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 4 of 4
1. Veðurstofa Ísland ‐ Icelandic Meteorological Office, IMO (IMO)

The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields

Geology Geophysics Pollution sources Sea ice Oceanography Atmosphere Ecosystems
2. Flugstoðir ‐ ISAVIA (ISAVIA)

Isavia is the national operator of Iceland‘s airports, air navigation services and air communications system. Iceland is responsible for international services in the North Atlantic including oceanic air traffic control services and the upper airspace of Greenland. The company and its subsidiaries have undertaken other international support tasks in the past, such as the development of Pristina Airport and ATM services in Kosovo. The company conducts air navigation calibrations in Iceland, the Faroe Islands and Greenland. Isavia operates under the regulatory supervision of the Icelandic and Danish Civil Aviation Authorities. Isavia and its subsidiaries conduct research and development of systems to fulfill all the special needs and safety requirements of the airports and air navigation service operation, with economic considerations in mind. Most of the software systems used by the air traffic control center in Reykjavik and towers are developed in conjunction with the subsidiary company, Tern Systems ltd. The products have been successfully marketed internationally in several overseas projects. For more detailed information, please see Isavia annual report 2010. Main gaps: Not specified Network type: Coordination

Atmosphere
3. Umhverfisstofnun ‐ The Environment Agency of Iceland (Umhverfisstofnun)

The Environment Agency operates under the direction of the Ministry for the Environment. It's role is to promote the protection as well as sustainable use of Iceland’s natural resources, as well as public welfare by helping to ensure a healthy environment, and safe consumer goods. Areas of operation: 1. Information and advice for the public, businesses and regulatory authorities 2. Monitoring of environmental quality 3. Evaluation of environmental impact assessment and development plans 4. Operation supervision, inspection, operating permits, etc. 5. Assessment of conservation effects and registration of unique nature 6. Management and supervision of designated protected areas 7. Wildlife management and conservation 8. Eco‐labeling 9. Labeling and handling of toxic as well as other hazardous substances 10. Coordination of health and safety in public places 11. Coordination of local environmental and health inspectorates 12. Genetically modified organisms (GMO) Main gaps: Metadata archives and metadata availability Network type: ‐ Thematic observations ‐ Community based observations ‐ Coordination

Geology Oceanography Atmosphere Ecosystems
4. Atmospheric Monitoring Network for Antropogenic Pollution in Polar Regions (ATMOPOL)

The project aims at establishing a long-term Arctic-Antarctic network of monitoring stations for atmospheric monitoring of anthropogenic pollution. Based upon the long and excellent experiences with different scientific groups performing air monitoring within the Arctic Monitoring and Assessment Programme (AMAP), an expanded network will be established including all AMAP stations and all major Antarctic “year-around” research stations. As an integrated project within the “International Polar Year 2007-08” initiative, the ATMOPOL co-operation intend to • Establish a long-term coordinated international Arctic-Antarctic contaminant programme. • Develop and implement a joint sampling and monitoring strategy as an official guideline for all participating stations. • Support bi-polar international atmospheric research with high-quality data on atmospheric long-range transport of contaminants (sources, pathways and fate). • Support future risk assessment of contaminants for Polar Regions based on effects of relevant contamination levels and polar organisms Based upon the well-established experiences of circum-Arctic atmospheric contaminant monitoring in the Arctic under the AMAP umbrella, a bi-polar atmospheric contaminant network will be established and maintained. In conjunction with the polar network of atmospheric monitoring stations for air pollution, surface-based and satellite instrumentation will be utilised to provide the characterization of the Arctic atmospheric-water-ice cycle. Together with numerical weather prediction and chemical transport model calculations, simultaneous measurements of pollutants at various locations in the Arctic and Antarctic will enhance our understanding of chemical transport and distribution as well as their long-term atmospheric trends. In addition to investigating the importance of atmospheric transport of pollutants an understanding of the transference and impact of these pollutants on both terrestrial and marine environments will be sought. A secretariat and a “scientific project board” will be established. During this initial phase of the project (2006), a guideline on priority target compounds, sampling strategies, equipment and instrumentation, analytical requirements, as well as quality assurance protocols (including laboratory intercalibration exercises) will be developed and implemented. The ATMOPOL initiative aims to address highly relevant environmental change processes and, thus, will strive to answering the following scientific questions: • How does climate change influence the atmospheric long-range transport of pollutants? • Are environmental scientists able to fill the gaps in international pollution inventories and identification of possible sources for atmospheric pollution in Polar Regions? • What are the differences in transport pathways and distribution patterns of various atmospheric pollutants between Arctic and Antarctic environments? Why are there such differences? What is the final fate of atmospherically transported pollutants and how does this impact on the environment and indigenous people?In order to understand the underlying atmospheric chemistry of pollution, e.g. atmospheric mercury deposition events, routine surface measurements of UV radiation as well as campaign related measurements of UV radiation profiles will also be included.The project will establish a cooperative network on atmospheric contaminant monitoring in Polar Regions far beyond the IPY 2007/08 period and is, thus, planned as an “open-end” programme. All produced data will be available for all participating institutions for scientific purposes as basis for joint publications and reports from the ATMOPOL database to be developed.

Pathways Atmospheric processes Heavy metals Long-range transport Contaminant transport Persistent organic pollutants (POPs) Atmosphere