Greenland: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Greenland as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 8 of 8
1. BioBasis - Zackenberg

The purpose of the BioBasis programme is to monitor basic qualitative and quantitative elements of biodiversity in the terrestrial ecosystems at Zackenberg in Northeast Greenland. The programme provides data on typical High Arctic species and processes that can be expected to react on year to year variation in climate as well as long-term climate change. It includes 30 variables of terrestrial and limnic plant, arthropod, bird and mammal dynamics in the Zackenberg valley.

Biological effects Biology Fish Terrestrial mammals Modelling Ice Biodiversity Arctic Food webs Ecosystems
2. Programme for Monitoring of the Greenland Ice Sheet (PROMICE)

The main objective is to quantify the annual mass loss of the Greenland ice sheet, track changes in the extent of local glaciers and ice caps, and track changes in the position of the ice-sheet margin. Network type: - Observing and modelling the ice-sheet surface-mass balance - Quantifying the mass loss caused by iceberg calving - Monitoring the change of glaciers and ice caps in Greenland - Outlook

ablation Greenland Greenland ice sheet Ice ice dynamics
3. GeoBasis - ZERO

The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes CO2-flux, snowcover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and –sediment. GeoBasis also supports the ClimateBasis programme with service and datahandling during the field season.

Geophysics Climate change Ice Arctic Permafrost Ecosystems
4. ZERO-database

The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.

Biological effects Hydrography Geophysics Climate Polar bear GIS Sediments Marine mammals Biology Populations Soils UV radiation Fish Discharges Sea ice Climate change Terrestrial mammals Ice Biodiversity River ice Arctic Seabirds Geochemistry Reproduction Permafrost Ecosystems
5. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
6. Energy balance of the Greenland Ice Sheet

Analysis of the energy balance terms obtained during the measuring campaign in 1991 at Greenland. It deals with profile and turbulence measurements, RASS-SODAR observations and radiation measurments.

mass balance Climate variability Climate Climate change Ice Ice sheets
7. Ice-sheet mass balance in central West Greenland

The aim of the project is to obtain more insight in the response of the Greenland ice sheet to climatic change. For this purpose we will link our surface energy-balance model to an atmospheric model, so that the model can be forced by variables characterizing the atmosphere outside the thermal influence of the ice sheet itself. The modelling is supported by the mass-balance and meteorological data that we collect along a transect in West Greenland (the Kangerlussuaq-transect or K-transect). The albedo of the ice sheet is studied by means of satellite data and measurements obtained from a helicopter. Research activities - develop numerical models of the surface energy balance and the boundary layer above the ice sheet - perform annual measurements of the mass balance and ice velocity along the K-transect - maintain two automatic weather stations along the K-transect - study the surface albedo by means of remote-sensing images - improve methods to retrieve the surface albedo from satellite data by means of measurements obtained from a helicopter

mass balance Geophysics Climate variability Climate meteorology surface albedo Climate change Ice Ice sheets
8. Program for Arctic Regional Climate Assessment (PARCA)

The Program for Arctic Regional Climate Assessment (PARCA) was formally initiated in 1995 by combining into one coordinated program various investigations associated with efforts, started in 1991, to assess whether airborne laser altimetry could be applied to measure ice-sheet thickness changes. It has the prime goal of measuring and understanding the mass balance of the Greenland ice sheet, with a view to assessing its present and possible future impact on sea level. It includes: · Airborne laser-altimetry surveys along precise repeat tracks across all major ice drainage basins, in order to measure changes in ice-surface elevation. · Ice thickness measurements along the same flight lines. · Shallow ice cores at many locations to infer snow-accumulation rates and their spatial and interannual variability, recent climate history, and atmospheric chemistry. · Estimating snow-accumulation rates from atmospheric model diagnosis of precipitation rates from winds and moisture amounts given by European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. · Surface-based measurements of ice motion at 30-km intervals approximately along the 2000-m contour completely around the ice sheet, in order to calculate total ice discharge for comparison with total snow accumulation, and thus to infer the mass balance of most of the ice sheet. · Local measurements of ice thickness changes in shallow drill holes ("dh/dt" sites in Figure 1). · Investigations of individual glaciers and ice streams responsible for much of the outflow from the ice sheet. · Monitoring of surface characteristics of the ice sheet using satellite radar altimetry, Synthetic Aperture Radar (SAR), passive-microwave, scatterometer and visible and infrared data. · Investigations of surface energy balance and factors affecting snow accumulation and surface ablation. · Continuous monitoring of crustal motion using global positioning system (GPS) receivers at coastal sites.

ablation Glaciers regional climate mass balance Climate variability accumulation remote sensing Climate change Ice Ice sheets Ice cores glaciology Greenland ice sheet SEARCH