Greenland: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Greenland as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 5 of 5
1. National Institute of Geophysics and Volcanology (INGV)

INGV operates in the Arctic region with observational activities in Svalbard, near the area of Ny-Ålesund, where the Institute has installed three stations to monitor ionospheric scintillation, currently in operation. In Svalbard, the PEGASO (Polar Explorer for Geomagnetic And other Scientific Observations) project has performed several stratospheric balloon launches (Pathfinders) with the aim of studying the Earth's magnetic field in an area with poor coverage measurements and of studying the possible trajectories of circumpolar winds at high altitudes. At the Greenland Base of Thule, INGV in collaboration with CNR, DMI (Danish Meteorological Institute), University of Rome La Sapienza and ENEA, carries out spectrometric observations for the analysis of stratospheric chemistry and mesosphere to monitor the ozone layer. In cooperation with In addition, an upper atmosphere permanent observatory for magnetosphere and Ionosphere sounding, including Auroras, and other geophysical processes is operated in Greenland, Zackemberg station in cooperation with Danish scientists. INGV is currently involved in the coordination of two European initiatives: a) EMSO (European Multidisciplinary seafloor Observatory) a European research infrastructure of ESFRI (European Strategy Forum on Research Infrastructures), which counts to establish a multi-parametric permanent network in the surrounding European seas, including the Arctic area. The project began in April 2008 with the participation of 11 European countries; b) EUROANDRILL, created under the aegis of the European Science Foundation, aims to drill key areas of polar areas to study past and future climate. The project involves the involvement of 10 European and 3 extra-European countries. The Institute is also active in other projects in the Arctic, in particular actively participates in the seismic network GLISN, developed from the existing stations in and around Greenland.

Geology Oceanography Atmosphere
2. Spain general summary

Our objective in present SAON meeting was to know more about SAON activities and plannings to coordinate and promote guidelines criteria for observations in the ARctic Present Spain Research in Arctic is performed mainly for universities and scientific institutions , down the responsability of the Science Department with the support of several national institutions including the Defense Department and Foreign Affairs Institutions are coordinated by the National Polar Committee. The National Scientific Program finance the activities in the polar zones Although our main scientific activities are in Antarctica the activity of Spain in Arctic is rapidly increasing following the fact that Arctic research is a priority task in our Science Program At present we have detected 16 scientific groups working activelly in the differnts fields of Arctic topics (glaciology, meteorology, permafrost, high atmosphere, ecology, physical oceanography, marine geology and biology) These activities are mainly performed in cooperation with Arctic countries Institutions via institutional or researchers contacts About our media to work in Arctic ocean Spain has at present two multiporposes oceanographic research ships In the last years our Ocanographic ship Hesperides has developed two campaigns in The area of Greenland and Svalvars Island in the fields of marine Geology , marine biology and physical oceanography For next summer Hesperides will perform a third oceanographic campaign close to the Atlantic coast of Greenland Other national institutions have been working in marine biology campaigns including fisheries stock evolution Spain has a National Centre of Polar Data were all researchers must enter their raw data gathered in the polar campaigns We considerer , at present , our interest to cooperate inside SAON board, considering that besides other possible cooperation to SAON tasks could be a cooperation with our Polar Data Centre

Geology Oceanography Atmosphere Ecosystems
3. Geological Survey of Denmark and Greenland (GEUS) (GEUS)

Not specified

Geology geomorphology Geophysics Greenland
4. Paleeoecology and (periglacial) eolian sediment transfer in the ice-sheet marginal zone of southwestern Greenland (Kangerlussuaq region)

The project aims at reconstructing the environmental history in the interior Kangerlussuaq region since deglaciation. Focus is placed on the lacustrine and eolian sediments to decipher climate evolution in terms of temperature, evaporation- precipitation balance and phases of high- wind speed events. The overall objectives are to build a high-resolution (decadal-to-century scale) chronostratigraphic framework for past climate variability from the analysis of organic-rich lake sediments and peat filled basins using a variety of sediment analysis techniques (magnetostratigraphy, grainsize, sedimentfractionation techniques, AMS 14C dating, diatom-, pollen- and macrofossil analysis) and sedimentology. Research activities diatom analysis, pollen analysis, magnetic susceptibility, automated correlation techniques, grainsize, organic chemistry, sediment fractionation techniques, AMS radiocarbon dating, sedimentology, mapping, sediment transport and erosion measurements/monitoring, micro-meteorology, vegetation mapping, pollen rain studies, diatom salinity training sets, limnology

Glaciers Geology eolian Climate variability Climate sedimentology Climate change Quaternary geology Ice sheets Geochemistry Sediments paleeoecology geomorphology periglacial paleolimnology
5. Palaeobotany and palynology

In the wake of topical research issues such as global change and energy resources, one can recognize two priority targets for the study of fossil plant remains: - insight into the role of land plants and phytoplankton as monitors, recorders, motors and moderators of climatic and environmental change; -insight into the predictive value of organic remains with respect to genesis, composition, occurrence, quality and quantity of fossil fuel reserves. In harmony with these targets, current research at the Laboratory of Palaeobotany and Palynology (LPP) is aimed to provide for basic contributions to the palaeoecological study and interpretation of Palaeozoic, Mesozoic and Cenozoic plant life. Four interconnected areas of scientific emphasis are currently distinguished: - biotic change: documentation and causal analysis of changes of past plant biota in terrestrial and marine environments, both at short and long time-scales; - selective preservation: identification of the biological, physical and chemical factors that determine selective preservation of organic matter during transport, sedimentation and burial; - methodology: development and introduction of new analytical methodology relevant to the study and interpretation of fossil plant remains; - systematics: generation and compilation of systematic data aimed at the accurate identification and classification of fossil plant remains. Overview of results LPP strives after a balance between the study of land plant remains and organic-walled marine phytoplankton (mainly dinoflagellates). Research objectives are related to both short (latest Pleistocene-Holocene) and long time-scales (late Palaeozoic-Cenozoic). Short time-scales Modern land plant communities can be understood only in the light of their history since the onset of the last deglaciation (15,000 yr BP). In western and southern Europe this history is governed by the climatically induced spread of forest communities and their subsequent recession as man's influence expanded. Through fine-scale analysis (temporal and spatial, as well as systematic), of assemblages of microscopic and macroscopic plant remains, research concentrates on the accurate discrimination between autogenic, climatically induced, and anthropogenic vegetational change in contrasting physiographic entities: (1) crystalline mountains in France and the Iberian peninsula; (2) landscapes characterized by Pleistocene-Holocene eolian (sand, loess) deposition in the Netherlands and Germany; (3) fluvial plains in the Netherlands; (4) littoral landscapes in Portugal, and (5) Arctic landscapes of Spitsbergen, Jan Mayen and Greenland. Following earrlier research experiences with respect to the palaeoecological analysis of pollen assemblages from the Vosges (France), in the research period special attention was given to deciphering the complex, altitude related, late Pleistocene-Holocene pollen signals from other low mountain ranges. Results have demonstrated that the spatial distribution of vegetation patterns can be followed through time by recognizing: (1) common time-proportionate trends in pollen values, and (2) local pollen components characteristic for altitudinal vegetation zones and lake/mire development. Long time-scales For the recognition and evaluation of biotic change on long time-scales, LPP concentrates on the study of land plant and phytoplankton records from sedimentary successions that contrast with respect to: (1) time of formation (selected late Palaeozoic, Mesozoic and Cenozoic intervals); (2) paleotectonic and palaeogeographic history (intracratonic; passive and active plate margins); (3) depositional environment (terrestrial to deep-marine); and (4) biogeographic provinciality. Temporal and spatial distribution patterns of plant remains are explored for proxy variables indicative of terrestrial and marine environmental change. Investigated variables include land temperature, humidity, precipitation, runoff, sea-level, sea surface temperature, salinity, nutrient supply, productivity, organic burial rate and CO2 level. In the review period particular attention has been given to the development of palaeoecological models of dinoflagellate cyst distribution in marine sediments. It has been shown that: (1) the potential of dinoflagellates in Mesozoic and Cenozoic time-resolution may frequently exceed that of planktonic foraminifera and calcareous nannoplankton, and (2) dinoflagellates can be applied in novel ways to further the environmental understanding of depositional sequences and sedimentary cycles defined by physical (seismic, sedimentological) analysis. Although research related to global change programmes is generally restricted to the Late Tertiary-Quaternary, there is one notable exception. It is recognized that a better understanding of the patterns and processes of past mass extinctions can contribute to an understanding of present and future man-induced extinction processes. Work by LPP concentrates on the profound biotic crises at the Permian/Triassic (P/Tr) and Cretaceous/Tertiary (K/T) junctions. Study of the P/Tr land plant record has now revealed ecosystem collapse in the terrestrial biosphere. At the K/T junction, it has been demon-strated that dinoflagellates have remained immune to extinction. Independent of configurations predicted by meteorite-impact or massive volcanism, therefore, palynological studies enable high-resolution reconstruction of environmental change, both during pre-crisis times and the phases of K/T ecosystem decline and recovery.

Geology palaeobotany Climate variability Climate Climate change palynology Sediments