To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Finland as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Fresh water quality monitoring program is designed to collect long term water quality data from lakes and rivers. It serves EU obligated data collection among other interests. The data is used to detect variation in time in the measured variables and to assess the physiological and chemical state of the water body. The program is managed by the Finnish Environment Institute (SYKE). Regional centres for economic development, transport and the environment are responsible for the field work needed for maintaining the monitoring stations. Monitoring frequency varies between locations from annual to once in three, six or 12 years.
The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Hydrometeorological monitoring program produces real time information on precipitation and snow water equivalent. Information is utilized in modeling and forecasting floods and snow load. As part of the program, information of evaporation is produced with WMO standards. The program is coordinated by Finnish Environment Institute (SYKE). Finnish meteorological institute and Lapland regional centre for economic development, transport and the environment manage measurements and field work.
Hydrological monitoring aims produce real time information of water level and discharge, ice thickness including freeze-up and break-up in winter from a network of monitoring stations. Monitoring data is utilized in water resource planning, water management and flood damage prevention. Monitoring is coordinated by Finnish Environmental Institute (SYKE).
Monitoring of the water quality reflecting long-range transboundary air pollution including acidifying compounds, metals and POPs, and climatic change. Part of the sites are also including in biological monitoring. Monitoring sites are the most upland lakes and they are not under any significant human impact. Information is distributed to the UN Convention on Long-range Transboundary Air Pollution. Monitoring is managed by Finnish Environmental Institute (SYKE).
Monitoring follows groundwater level and quality as well as changes in soil humidity and frost depth in winter.
The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.
Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.
The focus of this project is the improvement of water vapour measurement techniques in the upper troposphere and lower stratosphere. Routine measurements of water vapour with high accuracy in these altitudes are an unsolved problem of meteorological measurements up to now. Water vapor is the dominant greenhouse gas in the earth's atmosphere. Recent model calculations show that observed water vapour increases in the stratosphere contribute significantly both to surface warming and stratospheric cooling. In addition to climate change both the direct chemical and indirect radiative effects of stratospheric water changes in ozone chemistry are important as well. Despite of many activities in the past ten years, accuracies of the available methods for measuring the water vapour vertical profile in the free atmosphere are still not sufficient. Therefore one of the aims of the forthcoming EU COST Action 723 "The Role of the Upper Troposphere and Lower Stratosphere in Global change", is to improve sounding and remote sensing techniques of water vapour (see http://www.sat.uni-bremen.de/cost/). Another example of the planned work focusing on water vapour is proposed GEWEX (Global Energy an Water Cycle Experiment) Water Vapour Project (GVaP). See [SPARC 2000] and the references therein. The idea of LAUTLOS-WAVVAP comparison/validation experiment which brings together lightweight hygrometers developed in different research groups, which could be used as research-type radiosondes in UTLS region. These include the following instruments: Meteolabor Snow White hygrometer, NOAA frostpoint hygrometer, CAO Flash Lyman alpha hygrometer, Lindenberg FN sonde (a modification of Vaisala radiosonde) and the latest version of regular Vaisala radiosonde with humicap-polymer sensor. The experimental plan of LAUTLOS-WAVVAP is based on the regular launches of multi-sensor payloads from the Sodankylä meteorological balloon launch facility in January -February 2004. The aim is to study the effect of atmospheric conditions such as ambient temperature, water vapour or relative humidity, pressure or solar radiation for each participating hygrometer/radiosonde. Both night and daytime launches are planned. Apart from the intercomparison/validation experiment the campaign also have an scientific aim of studying the stratospheric PSC occurrence and their dependence on local temperature and the water vapour content. The campaign will be hosted by FMI Arctic Research Centre Sodankylä assisted by Vaisala Oyj and is a part of planned Finnish contribution to Cost 723 project. The campaign in Sodankylä is partly funded from LAPBIAT Facility, which belong to the EU program: Access to Research Infrastructures (see: http://www.sgo.fi/lapbiat/). References: SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapor/SPARC Report No2/ December 2000
The main objective is to establish a scientific basis for the detection of the earliest signs of ozone recovery due to Montreal protocol and its amendments. To achieve this we will select the best long-term ozone and meteorological data sets available (by ECMWF and NCEP). Ozone data will be studied by using advanced multiple regression methods developed in this project. Meteorological data would allow to determine the dynamical changes and trends and assess their role in re-distribution of stratospheric ozone in recent decades and in order to force the Chemical Transport Models to assess the relative roles of chemistry and transport in ozone changes. Finally, the synthesis of the key objectives will improve the attribution of observed ozone changes to anthropogenic influences and to the variations in a natural atmosphere.
The International Panel on Climate Change (IPCC) has very recently revised the prediction of global average temperature increase during the next century from 1.0-3.5 to 1.4-5.8 K. The increase in the upper limit of the prediction is largely due to the role of aerosols in the climate of the Earth: it is believed that reduction of pollution will result in reduced direct and indirect (via clouds) scattering of sunlight back to the space. However, as can be seen from the large uncertainty of the estimated temperature increase, not enough is known about the role of natural and anthropogenic aerosols in climate processes. This is also reflected in the Key Action 2, under the RTD priority 2.1.1, calling for ”… quantification and prediction of … concentration of … aerosols, in particular the fine fraction of particles and their precursors”. The concentration of aerosols is controlled by their sources and sinks, and thus the prediction of particle concentration requires the quantification of aerosol source terms. The main objective of QUEST is to quantify the number of new secondary aerosol particles formed through homogeneous nucleation in the European boundary layer, and the relative contributions of natural and anthropogenic sources. The role of homogeneous nucleation in the formation of new atmospheric particles was realized in the 1990s, and considerable effort has been devoted to studies of aerosol formation in various parts of the Globe. The longest continuous data series of nucleation events has been obtained at a forest field station in Finland, where aerosol size distributions between 3 and 150 nm in diameter have been recorded in 10 minute intervals since the beginning of 1996 [1]. Nucleation events occur in this rather clean Boreal area roughly 50-60 times per year, the highest event frequency taking place in the spring months (March-May). The concentration of new particles per cc of air formed during one event varies between roughly 100-10 000. Taking the average number to be one thousand, and assuming that the nucleation takes place in a well mixed boundary layer having a height of 1000 m, it can be estimated that the aerosol source term in the Boreal forest area is on the order of 51013 m-2 per year. This is on the same order as the global aerosol yield estimated from primary emissions [2]. The number given here is very crude as we can at present only guess the vertical extent of the nucleation zone; however, it clearly shows that homogeneous nucleation events influence atmospheric particle concentrations at least at regional scales, and possibly also globally. Many features of the Boreal nucleation events have been revealed thus far. Necessary (but not sufficient) conditions include sunny weather, vertical mixing of air in the morning (prior to the detection of the event) [1], and a treshold value of a quantity that depends on radiation intensity (vapor source) and pre-existing aerosol size distribution (vapor sink) [3]. The springtime events always seem to take place in Polar or Arctic air masses [4], but so far it is unclear whether the meteorology is similar during other seasons. Aerosol flux measurements [5] indicate that the particles are formed aloft, but the vertical extent of the nucleation layer is unknown. However, there is clear evidence from simultaneous measurements at various locations, that the horizontal extent of the areas in which the nucleation takes place can be hundreds and in some cases even thousands of kilometers [1]. No direct correlation of nucleation events with SO2 concentrations has been found; however the product of SO2 concentration, ammonia concentration, and calculated OH concentration correlates with the events (personal communication). These results hint that the recently suggested ternary sulfuric acid-ammonia-water nucleation mechanism of small clusters, followed by the growth of the clusters due to condensation of other (possibly organic) vapors [6], may be operational in the Boreal forest area. Furthermore, there is experimental evidence that nucleation event particles in the 4-5 nm range are soluble in butanol (working fluid of condensation particle counters), which indicates organic composition. However, the confirmation of the ternary nucleation hypothesis requires simultaneous measurements of sulfuric acid vapor and ammonia, and further studies of the composition of the nucleated particles. Furthermore, to facilitate large-scale modelling studies, the vertical extent of the nucleation events, as well as the meteorological conditions during non-springtime events have to be investigated. Measurements of nucleation events at a more Central European location indicate that SO2 levels increase during the majority of nucleation events [7]. It can be hypothesized that a part of observed nucleation events (minority in Central Europe, majority in the Boreal area) are ”natural” and a part are affected (or even caused) by pollution (majority in Central Europe, minority in the Boreal area). The confirmation of this hypothesis and implementation of the pollution type nucleation mechanism into a large-scale model requires carefully designed measurements from a location which is preferably Southern European as there is very little available nucleation data from this area. One of the few observations of new particles in Southern Europe [8] is from the Italian site where we plan to study the frequency, meteorology, vertical extent, and chemical precursors of nucleation events. Another type of nucleation events has been observed all along the western coast of Europe and have been studied more particularly at the west coast of Ireland [9]. These events, which have a duration of the order of 4 hours and up to 8 hours, occur almost daily around low tide and under conditions of solar radiation, indicating photochemical source. Incredibly, the peak new particle concentrations often exceed 106 cm-3, making this the strongest natural source region of atmospheric particles. The exact chemical mechanisms leading to the production of coastal particles still remains an open question. As in other environments, there appears to be sufficient sulphuric acid vapour to participate in ternary nucleation with ammonia and water, however, there is insufficient sulphuric acid to grow these particles to detectable sizes [9]. The most probable chemical species involved in the production or growth of these particles is Iodine, or an Iodine Oxide, produced photochemically from biogenic halocarbon emissions [9]. The production of particles from the photolysis of CH2I2 in the presence of ozone has been confirmed by recent smog chamber experiments [10]. While the concentration of new particles in this environment is extraordinarily high, its impact on background particle and CCN contribution remains unclear and needs to be quantified. A limited single study [11] has shown that the coastal aerosol plume is detectable up to several hunderds of km downwind and that the new coastal particles readily grow into CCN sizes (larger than 100 nm). An intensive campaign at the coast of Ireland will quantify the flux of both biogenic halocarbon precursor gases and the yield of new, and radiatively-active particles in the European coastal boundary layer. The objective of QUEST is to determine the source strength of new particle formation in the three above mentioned cases. The specific objectives are: 1) To fill in gaps that exist in the understanding of chemical and physical pathways leading to homogeneous nucleation of new aerosol particles; 2) To understand the meteorological conditions required for the events to take place and to be able to predict the horizontal and vertical extent of the events; 3) To implement parametrized representations of the nucleation mechanisms, based on the information from 1) and 2), to an European scale model in order to determine the source strength of homogeneous nucleation of aerosol particles in the European boundary layer.