Canada: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Canada as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 15 of 15
1. Northern Contaminants Program (NCP) (NCP)

The Northern Contaminants Program aims to reduce and where possible eliminate long-range contaminants from the Arctic Environment while providing Northerners with the information they need to make informed dietary choices, particularly concerning traditional/country food. To achieve these objectives the NCP conducts research and monitoring related to contaminants in the Arctic environment and people. Monitoring efforts focus on regular (annual) assessment of contaminant levels in a range of media, including air, biota and humans. Environmental research is conducted into the pathways, processes and effects of contaminants on Arctic ecosystems while human health research focuses on assessing contaminant exposure, toxicity research, epidemiological (cohort) studies, and risk-benefit assessment and communications. Main gaps: Contaminant measurements in Arctic seawater, toxicity data specific to Arctic species. Network type: - Thematical observations: Contaminants levels and relevant ancilliary parameters - Field stations: Atmospheric observing stations at Alert, Nunavut and Little Fox Lake, Yukon. - Community based observations: Numerous communities throughout the Canadian Arctic participate in sample collection - Coordination: National coordination of the program provided by the NCP secretariat, which also acts as liaison with AMAP.

Atmosphere Ecosystems Human health Oceanography
2. Northern Human Biomonitoring – Northern Contaminants Program (NCP)

The NCP aims to reduce and, wherever possible, eliminate contaminants in traditionally harvested foods, while providing information that assists informed decision making by individuals and communities in their food use. The biomonitoring program monitors concentrations of contaminants in human tissues in the North and assesses spatial and temporal patterns/trends. Where available, contaminant guidelines are used to evaluate risk to populations/communities. A multi-disciplinary approach is used to evaluate contaminant concentrations, health effects, dietary research, and risk management/communication to meet the objectives of the NCP. Main gaps: Trend data of legacy POPs and metals, particularly for communities having only two sampling periods; measurements of tissue concentrations of emerging contaminants and other contaminants of interest (e.g., food preservation/storage, personal care products); health effects data. Network type: Thematical observations: Contaminant concentrations and health effects data - Field stations: None, community / population based research. - Community based observations: Participation of community health workers and community residents is essential for data collection through tissue samples - Coordination: NCP management committee, review teams, and regional contaminant committees all involve members from federal governments, territorial and provincial governments, northern Aboriginal partner organizations throughout all phases of research planning, implementation and reporting.

Human health
3. Hydrometric Observations

To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations

Oceanography Atmosphere Human health Ecosystems
4. Arctic Avian Monitoring Network

The main objective of the Arctic Avian Monitoring Network is to characterize the occurrence of birds in the Arctic to support regulatory responsibilities and conservation of birds and the biodiversity on which they depend. Temporal and spatial changes can be used to indicate changes in ecosystems that might otherwise be difficult to detect (e.g. marine areas) and can also be used to model predicted changes due to human activity. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Some species groups not well covered (e.g. landbirds and shorebirds) Network type: Network consists of programs divided into three species themes that combine common aspects of biology and human use: Waterfowl: e.g. ducks geese and swans • centered on aerial surveys of high density breeding areas and following non-breeding birds using satellite telemetry Seabirds: e.g. gulls, terns and auks • centered on surveys at breeding colonies and of birds at sea (either by direct observation or through the use of data loggers) Shorebirds: e.g. sandpipers, plovers and phalaropes • focused on broad-scale, stratified sampling of terrestrial areas and aerial surveys of non-marine habitats

Oceanography Human health Ecosystems
5. ArcticNet Network of Excellence Observing Program

ArcticNet brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, government and industry to help Canadians face the impacts and opportunities of climate change and globalization in the Arctic. Over 110 ArcticNet researchers and 400 graduate students, postdoctoral fellows, research associates and technicians from 28 Canadian universities and 8 federal departments collaborate on 28 research projects with over 150 partner organizations from 15 countries. The major objectives of the Network are: • Build synergy among existing Centres of Excellence in the natural, human health and social Arctic sciences. • Involve northerners, government and industry in the steering of the Network and scientific process through bilateral exchange of knowledge, training and technology. • Increase and update the observational basis needed to address the ecosystem-level questions raised by climate change and globalization in the Arctic. • Provide academic researchers and their national and international collaborators with stable access to the coastal Canadian Arctic. • Consolidate national and international collaborations in the study of the Canadian Arctic. • Contribute to the training of the next generation of experts, from north and south, needed to study, model and ensure the stewardship of the changing Canadian Arctic. • Translate our growing understanding of the changing Arctic into regional impact assessments, national policies and adaptation strategies. Main gaps: [Not specified] Network type: Thematical observations:Yes Field stations: Yes on Land (see CEN sheet) and Marine (CCGS Amundsen) Community based observations: Yes Coordination: Yes

Oceanography Atmosphere Human health Ecosystems
6. Sea Ice

The Canadian Ice Service (CIS), a branch of the Meteorological Service of Canada, is the leading authority for information about ice in Canada’s navigable waters. CIS provides the most timely and accurate information about sea ice, lake ice, river ice and icebergs to: • Ensure the safety of both mariners and Canadians, their property and their environment through the provision of hazardous ice condition warnings • Provide present and future generations of Canadians with sufficient knowledge to support sound environmental policies In summer and fall data collection and analysis is focussed on the Arctic and the Hudson Bay regions with daily satellite acquisitions. In winter and spring, the data collection is focussed on the Great lakes, the St. Lawrence River and the Gulf of the St. Lawrence and the Newfoundland and Labrador coasts The following products are produced: • In situ briefings, warnings, daily ice charts, image analysis charts, regional charts, observed charts, short- and long-term forecasts and iceberg bulletins and charts; specialised ice information services for Other Government Departments and research communities • Oil spill monitoring; satellite image analysis for oil spill detection • Annual Ice Atlas • Archive of climatic ice information Main gaps: Satellite monitoring of Arctic sea ice is limited to: • Canadian waters, • Bi-Weekly acquisitions from January to March • Weekly acquisitions from April to May • Daily acquisitions of areas where shipping is active from June to November Network type: various: satellite data, observations from ships and aircraft. CIS acquires and analyses thousands of satellite images, conducts millions of square kilometres of airborne reconnaissance and receives hundreds of ship and shore ice reports annually.

Human health Oceanography
7. Arctic Marine Biodiversity Monitoring Network

The main objective of the Arctic Marine Biodiversity Monitoring Network is to develop and implement, for priority marine ecosystems, an integrated, long-term biodiversity monitoring plan to detect changes in biodiversity temporally and spatially, and to establish links between such changes and anthropogenic drivers. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Network type: - Thematical observations: all trophic levels and appropriate proxy variables for biodiversity - Field stations: fixed locations on land; research ships and icebreakers of the Canadian Coast Guard; other ships of opportunity as available; moorings - Community based observations: connected to scientific projects - Coordination (e.g. not directly involved in observations, but coordinates data and use (for instance AMAP) : national coordination of the network, development of plans, data analysis, reporting

Human health Oceanography
8. International Circumpolar Surveillance of Infectious Diseases (ICS) (ICS)

Connect public health laboratories and institutes throughout the circumpolar north for the purposes of monitor infectious diseases of concern. Main gaps: russia

Human health
9. Atmospheric Observations

To acquire atmospheric data in support of both the prediction and detection of severe weather and of climate trend and variability research. This serves a broad range of users including researchers, policy makers, and service providers. Main gaps: Long-term, atmospheric monitoring in the North poses a significant challenge both operationally (e.g. in-situ automated snowfall measurements) and financially (charterd flights for maintenance and calibration).Most monitoring in the North is limited to populated areas. Attempts to develop an AMDAR capacity out of First Air and Canadian North fleets failed due to economical and technical difficulties. As demonstrated through impact studies, benefits of AMDAR in the North would be tremendous, however would require acquisition and deployment of specialized sensing packages such as TAMDAR (which includes measurements of relative humidity), development of datalink capacity through satellite communications (e.g. Iridium), and upgrading some aircraft systems when possible, especially the aircraft navigation systems. Network type: Atmospheric observing stations over land and sea composed of: - Surface Weather and Climate Network: o In-situ land stations comprising both Hourly stations and Daily Climate observations - Marine Networks: o Buoys (moored and drifting) o Ships: Automatic Volunteer Observing System - Upper Air Network: o In situ (radiosonde) o In situ Commercial Aircraft (AMDAR)

Oceanography Atmosphere Human health
10. Sociodemographic factors influencing nutrition and contaminant exposure in Nunavik

Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.

Populations PCBs Heavy metals Indigenous people Long-range transport Exposure Persistent organic pollutants (POPs) Data management Diet Human health Human intake
11. Mercury in Salluit : phase 2 : Effects of mercury on oxydative status and sensorimotor functions

Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.

Biological effects Populations Heavy metals Fish Indigenous people Exposure Diet Temporal trends Human health Human intake
12. Effects of prenatal exposure to OCs and mercury on the immune system of Inuit infants (year 3)

This study investigates possible detrimental effects on the immune system of Inuit infants which may be induced by prenatal and postnatal (breast feeding) exposure to persistent environmental contaminants such as organochlorine compounds. These substances accumulate in the body of Inuit women in part due to their consumption of sea mammal fat and can be transferred to the foetus during pregnacy and to the infant during breast feeding. Immune system function will be evaluated using several parameters: 1) the level of antibody produced by the infant following Haemophilus influenza immunization; 2) the level of proteins which protect the infant against bacterial infections (complement system) before its immune system is fully developed; and 3) the level of chemical messengers (cytokines) which enable the various cells of the immune system to communicate with each other, thereby maintaining its proper function and assuring the protection of the infant against bacteria, parasitic and viral infections.

Organochlorines Inuit infants mercury vitamin A prenatal exposure assessment Human health
13. Transplacental Exposure to PCBs and Infant Development/Human Exposure Assessment.

The main purpose of this research is to examine the consequences of in utero exposure to PCBs on Inuit infants, from birth to 11 months of age. Of particular interest is the impact of PCBs and mercury exposure on newborn’s thyroid hormones, physical growth, physical and central nervous system maturity, on infant’s overall health, mental, psychomotor and neurobehavioral development, and on functional and neural impairment in the domains of visual and spatial information processing. The proposed project is designed to replicate and extend previous findings by studying a more highly exposed cohort of infant, and using new infant assessment paradigms that have been linked to specific brain regions and neural pathways and, therefore, have a potential to provide information regarding possible mechanisms of action. The second objective of this research is to document the exposure to heavy metals, organochlorines and polyunsaturated fatty acids of newborns from selected communities in Nunavik. This ongoing effect study provides the opportunity to perform long time trend analysis of human exposure (data available for same communities since 1993).

Organochlorines PCBs Heavy metals Indigenous people Exposure Persistent organic pollutants (POPs) Reproduction Temporal trends Human health
14. Follow-up of preschool aged children exposed to PCBs and mercury through fish and marine mammal consumption.

The purpose of this research is to examine the long term consequences of prenatal exposure to PCBs and MeHg. This project is designed to study domains of effects overlooked in most of the previous studies. Of particular interest is the impact of exposure on neurophysiological and neurological endpoints that could be related to learning difficulties and disabilities. This study will support the health risk assessment process by providing dose-effect analysis for the neurophysiological and neurological domains of effects of preschool age children from Nunavik (Canada). The total sample will comprise 100 Nunavik Inuit children aged 5-6years. The following exclusion criteria will be applied: Apgar below 5 at 5 minutes of life, evidence of birth trauma, less than 37 weeks of gestation and less than 2500 grams at birth, congenital or chromosomal anomalies, epilepsy, significant disease history, major neurological impairment, fetal alcohol syndrome, presence of facial dysmorphologies associated with fetal alcohol effects.

Organochlorines PCBs Heavy metals Persistent organic pollutants (POPs) Human health
15. Inuvik Regional Human Contaminants Monitoring Program

The objective of the study is to establish baseline levels of specific heavy metal and organochlorine contaminants in the blood of women and their newborns, from communities in the Inuvik Region. The study examines traditional food consumption as a possible contaminant exposure pathway, while measuring organochlorines and metals in maternal and cord blood, as well as mercury levels in maternal hair. Collection of data from this region will complete the Northwest Territories/Nunavut database on maternal and cord blood. There were 104 women participating in this study from Inuvialuit, Gwich'in and non-native backgrounds. The results are similar to existing data from other regions in the Canadian north and confirm the importance of traditional foods among women of reproductive age. Exposure levels to contaminants were generally within guideline levels with only a few exceptions. Communication of results to the communities will continue until June 2000. Objectives: 1.To obtain regional values for the concentrations of organochlorine and metal contaminants in maternal and umbilical cord blood samples, and the concentration of mercury in hair samples from pregnant women in the Inuvik region. 2.To assess exposure to these contaminants through the frequency of traditional/country food intake and certain other lifestyle factors. 3.To describe any relationship between contaminant levels in blood and hair samples and frequency of consumption of traditional/country foods and selected lifestyle factors.

Human health