To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Canada as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
In order to assess the spatial and temporal patterns of the a-, b- and g-isomers of hexachlorocyclohexane (HCH) in the arctic biotic and abiotic environment, it is proposed that: (1) concentrations and ratios of HCH isomers be compared over time in air, water, seals, beluga, polar bears and seabirds to determine any shifts in isomeric ratios and how those shifts interrelate among the various media, and (2) concentrations and ratios of HCH isomers be compared spatially in the abiotic and biotic media and reasons for any patterns explored.
In order to determine the role of contaminants in declining populations of seaducks, it is proposed that: (1) archived samples of Oldsquaw collected from their Canadian arctic breeding grounds be analyzed for Hg, Se and Cu (in liver), Cd (in kidney), Pb (in wing bone), and selected samples be screened for a wider range of metals (in liver), and (2) archived samples of Oldsquaw wing bone be analyzed for stable isotopes (13C/12C; 15N/14N, and 34S/32S) and strontium (Sr) to discriminate whether birds from certain geographical areas of the Arctic are overwintering in freshwater (i.e. Great Lakes) or marine environments.
1) To determine tissue residue levels of organochlorines and metals in arctic fox feeding in or near an arctic coastal environment. 2) To assess whether or not residue levels found in arctic fox pose a potential wildlife health risk. 3) As part of a pilot project, to determine residue levels and assess potential wildlife health risk to wolverines feeding in or near a coastal environment.
Project intends to produce remote sensing information of sea ice and snow cover in Northern Europe. It is joined international project between ESA, GMES, Polarview and Finnish Environmental Institute. FEM uses the satellite images to follow the snow and ice melt in spring months (march-June) in Finland.
1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).
To examine concentrations and biological effects of selected trace elements in king and common eiders from various locations in the Canadian arctic.
The objectives of the project are: A) to determine temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic, and to assist in the development of long-term strategies for this priority pollutant by: i) measuring ambient air Total Gaseous Mercury (TGM) concentrations in the Canadian Arctic (Alert) and investigating the linkage to elevated levels of mercury known to be present in the Arctic food chain; ii) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; iii) studying the chemical and physical aspects of atmospheric mercury vapour transformation (oxidation) after polar sunrise and the resultant enhanced mercury deposition to the sea, snow and ice surfaces each year during springtime; and iv) obtaining a long-term time series of atmospheric mercury (TGM) concentrations at Alert for the purpose of establishing whether mercury in the troposphere of the northern hemisphere is (still) increasing and if so, at what rate; B) to establish a sound scientific basis for addressing existing gaps of knowledge of the behaviour of mercury in the Arctic environment that will enable international regulatory actions to reflect the appropriate environmental protection strategies and pollution controls for the Arctic by: i) studying the relative roles of anthropogenic and natural sources of mercury so as to clarify understanding of the atmospheric pathways leading to the availability of mercury to Arctic biota; ii) studying tropospheric TGM depletion mechanisms/processes leading to enhanced input of mercury to the Arctic biosphere in spring; iii) undertaking essential speciated measurements of particulate-phase and/or reactive gaseous-phase mercury as well as mercury in precipitation (snow/rain) to quantify wet and dry deposition fluxes into the Arctic environment; and vi) providing the scientific basis for the information and advice used in the preparation and development of Canadian international strategies and negotiating positions for appropriate international control objectives.
The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.
The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.
1. To determine the depth profiles of mercury (Hg) and lead (Pb) as well as manganese (Mn) and iron (Fe) in fifteen dated Arctic sediment cores over a three year period. Mercury is the main focus. 2. To quantify geographical trends in fluxes of the mercury and its enrichment factors in Nunavut, NWT, Nunavik, and Labrador. To link mercury findings with those of paleolimnological indicators, POPs, as well as indicators of biogeochemical processes of manganese and iron, all of which are obtained from the same cores, or cores from the same sites whenever possible. 3. To complement existing data on mercury in Arctic sediment cores with data generated over a much wider latitudinal and longitudinal range than previous work in order to provide a better understanding of Hg in Canada North. 4. Secondary to Hg, to provide loading data for Pb which may help elucidate the understanding of Hg pathways and sources.