Canada, Nunavik: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Canada, Nunavik as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 6 of 6
1. Sociodemographic factors influencing nutrition and contaminant exposure in Nunavik

Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.

Populations PCBs Heavy metals Indigenous people Long-range transport Exposure Persistent organic pollutants (POPs) Data management Diet Human health Human intake
2. Mercury in Salluit : phase 2 : Effects of mercury on oxydative status and sensorimotor functions

Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.

Biological effects Populations Heavy metals Fish Indigenous people Exposure Diet Temporal trends Human health Human intake
3. Effects of prenatal exposure to OCs and mercury on the immune system of Inuit infants (year 3)

This study investigates possible detrimental effects on the immune system of Inuit infants which may be induced by prenatal and postnatal (breast feeding) exposure to persistent environmental contaminants such as organochlorine compounds. These substances accumulate in the body of Inuit women in part due to their consumption of sea mammal fat and can be transferred to the foetus during pregnacy and to the infant during breast feeding. Immune system function will be evaluated using several parameters: 1) the level of antibody produced by the infant following Haemophilus influenza immunization; 2) the level of proteins which protect the infant against bacterial infections (complement system) before its immune system is fully developed; and 3) the level of chemical messengers (cytokines) which enable the various cells of the immune system to communicate with each other, thereby maintaining its proper function and assuring the protection of the infant against bacteria, parasitic and viral infections.

Organochlorines Inuit infants mercury vitamin A prenatal exposure assessment Human health
4. Transplacental Exposure to PCBs and Infant Development/Human Exposure Assessment.

The main purpose of this research is to examine the consequences of in utero exposure to PCBs on Inuit infants, from birth to 11 months of age. Of particular interest is the impact of PCBs and mercury exposure on newborn’s thyroid hormones, physical growth, physical and central nervous system maturity, on infant’s overall health, mental, psychomotor and neurobehavioral development, and on functional and neural impairment in the domains of visual and spatial information processing. The proposed project is designed to replicate and extend previous findings by studying a more highly exposed cohort of infant, and using new infant assessment paradigms that have been linked to specific brain regions and neural pathways and, therefore, have a potential to provide information regarding possible mechanisms of action. The second objective of this research is to document the exposure to heavy metals, organochlorines and polyunsaturated fatty acids of newborns from selected communities in Nunavik. This ongoing effect study provides the opportunity to perform long time trend analysis of human exposure (data available for same communities since 1993).

Organochlorines PCBs Heavy metals Indigenous people Exposure Persistent organic pollutants (POPs) Reproduction Temporal trends Human health
5. Follow-up of preschool aged children exposed to PCBs and mercury through fish and marine mammal consumption.

The purpose of this research is to examine the long term consequences of prenatal exposure to PCBs and MeHg. This project is designed to study domains of effects overlooked in most of the previous studies. Of particular interest is the impact of exposure on neurophysiological and neurological endpoints that could be related to learning difficulties and disabilities. This study will support the health risk assessment process by providing dose-effect analysis for the neurophysiological and neurological domains of effects of preschool age children from Nunavik (Canada). The total sample will comprise 100 Nunavik Inuit children aged 5-6years. The following exclusion criteria will be applied: Apgar below 5 at 5 minutes of life, evidence of birth trauma, less than 37 weeks of gestation and less than 2500 grams at birth, congenital or chromosomal anomalies, epilepsy, significant disease history, major neurological impairment, fetal alcohol syndrome, presence of facial dysmorphologies associated with fetal alcohol effects.

Organochlorines PCBs Heavy metals Persistent organic pollutants (POPs) Human health
6. Decision-Making and Diet in the North: Balancing the Physical, Economic and Social Components

Specifically, this project aims to: 1. Review and organize the reported social and cultural benefits and risks associated with a traditional diet and related activities (hunting, preparation, consumption); 2. Develop and apply a survey tool to increase our understanding of the determinants of diet behavior; 3. Develop a conceptual framework for the ordered presentation of this information; 4. Link this framework with those organizing information on health and economic benefits and risks associated with traditional foods.

Indigenous people Arctic Diet Human health