Barents Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Barents Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 4 of 4
1. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments
2. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
3. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
4. Biodiversity and adaptation strategies of Arctic coastal marine benthos

The objectives of the project are to assess: 1) the present biodiversity of benthos in Arctic coastal ecosystems (White Sea, southern Barents Sea, Pechora Sea), and indicators for changes caused by disturbances; 2) the adaptations to the Arctic climate for some benthic key-species, the additional influence of disturbance and the sensitivity of the key-species to additional stress from disturbances; 3) the geochemical background of the regions Research activities: Annual missions by ship for sampling water, sediments and macrobenthos. Biodiversity analysis of macrobenthos in sediments in laboratories in Murmansk (MMBI) and Tromsø (Akvaplan-Niva), ecophysiological analyses in laboratories of St. Petersburg (ZISP), Yerseke (NIOO-CEMO) and Pisa (UN), analyses of pollutants in laboratories in Moscow (MSU), Nantes(UN) and Pisa (UP), geochemical analyses of water and sediment in laboratories of Moscow (MSU) and Barcelona (UB). Training of 3 PhD students

key species Biological effects Biology Populations indicators Heavy metals Climate variability Climate change Biodiversity Sediments Ecosystems genetics benthos