To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Barents Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.
Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.
This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Ingolf Røttingen, ingolf.rottingen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: - Determine amount and distribution of commercial fish stocks - Describe abundance of biodiversity (benthos, fish, whale, zooplankton, phytoplankton, shellfish) - Determine annual variation in commercial fish biomass and feeding conditions for these fish species. Location: Southern and central Barents Sea – mainly in Norwegian sector. When operational: Area surveys are conducted throughout the year. The number of vessels in each survey differs, not only between surveys but may also change from year to year for the same survey. However, most surveys are conducted with only one vessel. It is not possible to measure all ecosystem components during each survey. Effort is always put on measuring as many species as possible on each survey, but available time put restrictions on what is possible to accomplish. Also, an investigation should not take too long time in order to give a synoptic picture of the conditions. Therefore the surveys must focus on a specific set of species. Other measured species may therefore not have optimal coverage and thereby increased uncertainty, but will still give important information. An overview of the measured species on each main survey is given in the table above. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. Assessment of commercial stocks are conducted through ICES. Geographical coverage: Norwegian EEZ of Barents Sea including waters around Svalbard. The joint programme with Russia covers much of the Barents Sea (southern, central, and much of northern part in fall). Network type: Surveys, annual stock assessments
This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Tor Knutsen, tor.knutsen@imr.no ) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Determine amount and distribution of zooplankton biomass (in three size fractions). 2. Describe abundance of dominant zooplankton species. 3. Determine annual variation in zooplankton biomass and feeding conditions of planktonfeeding fishes. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO).
This is a cooperation between Institute of Marine Research (IMR) in Norway (Contact person Randi Ingvaldsen, randi.ingvaldsen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Describe water mass distribution and properties 2. Document ocean climate variability as part of long time series 3. Relate ocean climate variability to variation in recruitment, growth, condition and size of commercial fish stocks Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. The current meter moorings are shifted once a year.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
The aim of this research program is to examine the response of animal populations to environmental variability at different spatial scales. We attempt to determine how individuals respond to the spatial heterogeneity of their environment, and what are the consequences of this response for the dynamics of subdivided populations. Specifically, we consider an ecological system involving biotic interactions at three levels: seabirds, their tick _Ixodes uriae_, and the microparasite _Borrelia burgdorferi_ sensu lato (Lyme disease agent). Colonies of seabirds represent discrete entities, within and among which parasites can circulate. Our previous work on this system in the norwegian arctic has enable us to show that (1) host dispersal can be affected by local conditions, (2) seabird tick populations are specialised among different host species, namely between sympatric kittiwakes _Rissa tridactyla_ and puffins _Fratercula arctica_, (3) in the kittiwake, females transmit antibodies against _Borrelia burgdorferi_ when their chicks have a high probability to be exposed to the tick vector. We propose to combine different approaches, incorporating field surveys and experiments and population genetic studies (of hosts and parasites), in order to better understand the role of local interactions and dispersal in the dynamics of such a system. The research program implies collaborations with researchers from other french groups, as well as with Canadian (Queen’s University) and Norwegian colleagues (from NINA and the University of Tromsø).
The objectives of the project are to assess: 1) the present biodiversity of benthos in Arctic coastal ecosystems (White Sea, southern Barents Sea, Pechora Sea), and indicators for changes caused by disturbances; 2) the adaptations to the Arctic climate for some benthic key-species, the additional influence of disturbance and the sensitivity of the key-species to additional stress from disturbances; 3) the geochemical background of the regions Research activities: Annual missions by ship for sampling water, sediments and macrobenthos. Biodiversity analysis of macrobenthos in sediments in laboratories in Murmansk (MMBI) and Tromsø (Akvaplan-Niva), ecophysiological analyses in laboratories of St. Petersburg (ZISP), Yerseke (NIOO-CEMO) and Pisa (UN), analyses of pollutants in laboratories in Moscow (MSU), Nantes(UN) and Pisa (UP), geochemical analyses of water and sediment in laboratories of Moscow (MSU) and Barcelona (UB). Training of 3 PhD students
This study aims at reconstructing the Barents Sea marine ecosystem before the exploitation by man. This reconstruction will be made by using the existing archival resources on catch statistics from the 17th to 19th centuries in the Netherlands, Germany, Denmark and the United Kingdom, in combination with the present knowledge an animal behaviour and food web structure. Fieldwork is planned in two former hunting areas in Spitsbergen: the Smeerenburgfjord and the Storfjord to study both the structure of the recent marine ecosystem and the composition, size and dating of the recent bird rookeries. This information in combination with the historical data will be used to reconstruct the original ecosystem.
As part of plankton and fisheries surveyes samples for nutrients measurements are collected. This is part of our routine monitoring of the marine environment.
The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.
Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.