To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Barents Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
The objectives of the project are to assess: 1) the present biodiversity of benthos in Arctic coastal ecosystems (White Sea, southern Barents Sea, Pechora Sea), and indicators for changes caused by disturbances; 2) the adaptations to the Arctic climate for some benthic key-species, the additional influence of disturbance and the sensitivity of the key-species to additional stress from disturbances; 3) the geochemical background of the regions Research activities: Annual missions by ship for sampling water, sediments and macrobenthos. Biodiversity analysis of macrobenthos in sediments in laboratories in Murmansk (MMBI) and Tromsø (Akvaplan-Niva), ecophysiological analyses in laboratories of St. Petersburg (ZISP), Yerseke (NIOO-CEMO) and Pisa (UN), analyses of pollutants in laboratories in Moscow (MSU), Nantes(UN) and Pisa (UP), geochemical analyses of water and sediment in laboratories of Moscow (MSU) and Barcelona (UB). Training of 3 PhD students
To monitor the inflow of salt and heat to through the Barents Sea to the Arctic Ocean.
This is an ongoing activity for monitoring variability in temperature and salinity in Barents Sea
To increase the understanding of temporal and spatial dynamics of cod and other commercial gadoid species, including the influence of environmental variability on population parameters, and make this knowledge available in assessable form for fisheries management.
Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.
Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.
Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.
The scientific objectives of this project is to add information that helps elucidate the role of the Arctic Mediterranean Seas (Arctic Ocean and Nordic Seas) in the climatic system of the Northern Europe. More specifically it has the following aims: - To assess the heat and carbon dioxide fluxes over the air-sea interface in the Barents Sea and elucidate the effect this has on the formation of Arctic Ocean intermediate waters and associated carbon fluxes. - To assess the temporal variability of the fresh water distribution in the Arctic Ocean, both river runoff and sea ice melt, and the affect this has on the outflow of fresh water to the regions of open ocean deep water formation (the Greenland, Iceland and Labrador Seas). - To assess the mixing of upper and intermediate waters along the East Greenland Current that gives the properties of the overflow into the North Atlantic Ocean and thus add to the driving of the thermohaline circulation. This also contributes to the sequestering of anthropogenic carbon dioxide.