Baltic Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Baltic Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 9 of 9
1. Algal situation, Bothnian Bay and Gulf of Bothnia

Is updated every day during the season, 2002-2007

Oceanography Ecosystems
2. Sea level Bothnian Bay and Gulf of Bothnia

[not specified]

Oceanography
3. Bothnian Bay and Gulf of Bothnia: Water sampling for chemical analysis + Marine biological data

Temperature, Salinity, pH, Oxygen, Hydrogensulphide, Phosphate, Total-Phosphorous, Nitrite, Nitrate, Ammonium, Total-Nitrogen, Alkalinity, Silicon, PON, POC, and Chlorophyll-a Zooplankton, Phytoplankton, Bacterial plankton, Zoobentos, Phytobentos, Seal, Sea Eagle, Amphipod, Sedimentation, Primary production, Klorophyll

Ecosystems Oceanography
4. SMHI Ice monitoring

The Swedish Meteorological and Hydrological Institute (SMHI) maps ice extent and type for shipping and weather prognoses (Table 6, #4.1). The ice extent at sea is of great importance for navigation, and assistance from an icebreaker is often needed, especially for harbors in the Bothnian Bay. Hence, ice conditions are mapped daily during the winter period, normally from the end of November until the end of May. Ice meteorologists take advantage of detailed reports about ice type and ice thickness from observers along the coast, e.g. pilots, special ice observers, and from the icebreakers passing through the ice-covered sea. Observations from helicopters are part of the regular icebreaking activities. Satellite images, especially from US weather satellites (NOAA-15, NOAA16 and NOAA-17), complement the ice reports and provide information on the large-scale ice situation on the scale 1 km x 1 km during clear sky conditions. More detailed ice information, down to the scale 20 m x 20 m, can be retrieved from a satellite-based instrument called Synthetic Aperture Radar (SAR). SAR sensors are also found onboard the Canadian RADARSAT (in operation since 1996) and on the European ENVISAT (since 2003) and provide information on the ice situation regardless of weather conditions and time of day. A good description of the ice situation is also needed as input data for weather prognosis models because the extent of sea ice has a major influence on weather (especially in coastal areas), and on temperature, cloudiness, and precipitation. Results from daily ice mapping are saved in a database from which e.g. climate statistics for the Baltic region may be generated.

Sea ice Oceanography
5. Seal and Sea Eagle subprogram

The Seal and Sea Eagle subprogram (Table 4, #8.2.6) monitors marine top consumers as indicator species to assess harmful effects of environmental toxics. Hopefully, in the long run, the program will show that these species have natural reproduction, health, and population. At present the subprogram has no sampling network. In the Bothnian Bay, the Swedish Museum of Natural History (NRM) monitors grey seals, ringed seals, and European sea eagles. These observations will show the state and trends of population size, development, and health of seals and of reproduction, population size, and development of European sea eagles. The aim of early warning is to detect changes in reproduction, health, survival, and population trends that may result from changes in the marine environment.

Pollution sources Ecosystems
6. Integrated Coastal Fish Monitoring

The Integrated Coastal Fish Monitoring subprogram (Table 4, #8.2.5) documents the composition of the stationary fish community as well as the growth, general health situation, and reproduction success of perch (Perca fluviatilis) and burbot (Lota lota) as indicators of environmental toxics. Fish from one site close to Umeå is sent to Gothenburg University for analysis of biochemical, physiological, histological and pathogenic variables in perch.

Fish Pollution sources Ecosystems
7. Free Water Body subprogram

The Free Water Body subprogram (Table 4, #8.2.4) aims to describe the effects of primarily overfertilization by means of hydrographical, chemical, and biological methods. One part of the program collects samples as frequently as 18 to 25 times per year at a few sea and coastal stations. Another part collects samples only once per year, during winter, to map the extent of areas with low oxygen content and the size of the nutrient pool, which gives the prerequisites for algal bloom in spring.

Pollution sources Oceanography Ecosystems
8. Metals and Organic Environmental Pollutants subprogram

Metals and Organic Environmental Pollutants subprogram (Table 4, #8.2.3) will report mainly on environmental toxics in biota in the large sea basins, of which the Bothnian Bay and the Gulf of Bothnia are the farthest north. Sea mussels, fish, and bird eggs are collected and analyzed for the content of metals and organic toxics. The material is then stored at the Swedish Museum of Natural History (NRM) for possible later retrospective analyses.

Pollution sources Ecosystems
9. Sweden Macro Fauna Soft Bottoms + Embryogenes of Amphipod (Sweden Macro Fauna Soft Bottoms)

The subprogram, Macro Fauna Soft Bottoms, contains trend and aerial monitoring of soft-bottom fauna in the Gulf of Bothnia. It is conducted by Umeå Marin Research Center (UmU-M) and includes basic sediment investigation and assessment of oxygen concentration in bottom waters. The aim is to observe if, and in what way, the structure of the bottom macro fauna changes. Changes may indicate over-fertilization and oxygen stagnation. Embryogenes of Amphipod (Monoporeia affinis and Pontoporeia femorata) and its environment is studied at 7 sites in Baltic Proper and 5 sites in Gulf of Bothnia as an indicator species of bottom sediment quality.

Ecosystems