Arctic Seas: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Arctic Seas as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 18 of 18
1. 129I in Arctic seawater

Anthropogenic 129I discharged from European reprocessing plants has widely dispersed in the Nordic waters including the Arctic. Due to the high solubility and long residence time of iodine in seawater, anthropogenic 129I has become an ideal oceanographic tracer for investigating transport pathways and the exchange of water masses.

129I Long-range transport Climate change Central Arctic Ocean Radionuclides Arctic Ocean currents
2. National Institute of Geophysics and Volcanology (INGV)

INGV operates in the Arctic region with observational activities in Svalbard, near the area of Ny-Ålesund, where the Institute has installed three stations to monitor ionospheric scintillation, currently in operation. In Svalbard, the PEGASO (Polar Explorer for Geomagnetic And other Scientific Observations) project has performed several stratospheric balloon launches (Pathfinders) with the aim of studying the Earth's magnetic field in an area with poor coverage measurements and of studying the possible trajectories of circumpolar winds at high altitudes. At the Greenland Base of Thule, INGV in collaboration with CNR, DMI (Danish Meteorological Institute), University of Rome La Sapienza and ENEA, carries out spectrometric observations for the analysis of stratospheric chemistry and mesosphere to monitor the ozone layer. In cooperation with In addition, an upper atmosphere permanent observatory for magnetosphere and Ionosphere sounding, including Auroras, and other geophysical processes is operated in Greenland, Zackemberg station in cooperation with Danish scientists. INGV is currently involved in the coordination of two European initiatives: a) EMSO (European Multidisciplinary seafloor Observatory) a European research infrastructure of ESFRI (European Strategy Forum on Research Infrastructures), which counts to establish a multi-parametric permanent network in the surrounding European seas, including the Arctic area. The project began in April 2008 with the participation of 11 European countries; b) EUROANDRILL, created under the aegis of the European Science Foundation, aims to drill key areas of polar areas to study past and future climate. The project involves the involvement of 10 European and 3 extra-European countries. The Institute is also active in other projects in the Arctic, in particular actively participates in the seismic network GLISN, developed from the existing stations in and around Greenland.

Geology Oceanography Atmosphere
3. Network of coastal observation of Arctic seas level

Monitoring and study of fluctuation of Arctic seas level

Oceanography
4. Marine corrosion of stainless steel in Polar seawater

The effects of biofilm settlement on corrosion resistance of stainless steels in polar seawaters are not well known. In warmer conditions (Mediterranean sea) biofilm increases both the risk of localised corrosion onset and the propagation rate of corrosion attack. Corrosion tests carried out in Antarctica demonstrated that biofilm growth at about 0°C induced electrochemical effects less important than those occurring in warmer conditions. On the contrary, corrosion tests performed in similar environmental conditions at Ny-Aalesund (Svalbard) showed more severe corrosion attack than in Antarctica. This research aims: - to define the influence of biofilm on stainless steel corrosion resistance in polar seawater in the range of temperature between -1 and +5 °C, - to define if change in salinity can influence corrosion process, - to identify stainless steel grades which can be acceptable in such conditions (polar seawater seems to be somewhat less corrosive, which gives the possibility to use cheaper stainless steels).

marine corrosion Biological effects stainless steels seawater Oceanography Exposure
5. Role of organic and inorganic particles in the mobility of radionuclides in the Kongsfjord-Krossfjord system (MORAK)

The aims of the project are: - to evaluate the fluxes of radionuclides in the water column and their accumulation in the sediment, on a short-time scale; - to determine the C/N and delta13C-delta15N ratios in suspended and sedimentary matter, and test their use as tracers of origin, composition and transformation pathways of organic particles. The selected study area is the Kongsfjord-Krossfjord system, Svalbard, considered as representative test-site for studying processes occurring in Arctic fjords. The focus of the project will be on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer. Specific methods will be used to trace the particle sources. The rate of accumulation-resuspension processes will also be investigated from the inner fjord to the outer continental shelf.

Glaciers Hydrography Climate Sea ice Contaminant transport Radionuclides Oceanography Arctic Sediments Ocean currents
6. Ecological and Physiological Investigations about the Impact of UV Radiation (UVR) on the Succession of Benthic Primary Producers in Antarctica

The succession of macro- and microalgal communities in the Antarctic will be investigated in field experiments under various UV radiation (UVR) conditions and in the absence or presence of grazers. The observed differences in the succession process will be correlated to physiological traits of single species, especially in spores and germlings, which are the most vulnerable stages in their life histories. Photosynthetic activity of the different developmental stages will be measured routinely. Additionally we plan the determination of pigment composition, C:N ratios, content of UV protective pigments and of possible DNA damage. The experiments will start in spring, concomitant to the time of highest UVBR, due to the seasonal depletion of the ozone layer in the Antarctic region. Supplemental laboratory experiments will be conducted to determine the effects of UVR on spores and germlings of individual species. In addition to the above analyses, we plan to examine of UVR induced damage of cell fine structure and of the cytoskeleton. The results of both the field and laboratory experiments will allow us to predict the consequences of enhanced UVR for the diversity and stability of the algal community.

Biological effects Biology UV radiation Environmental management Climate change Biodiversity Arctic Ecosystems Seaweeds
7. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
8. Oceanographic Applications to Eutrophication in Regions of Restricted Exchange (OAERRE)

1. Observations of the physics of vertical and open boundary exchange in Regions of Restricted Exchanges (REEs), leading to improved parameterisation of these processes in research and simplified models. 2. Study of the phytoplankton and pelagic micro-heterotrophs responsible for production and decomposition of organic material, and of sedimentation, benthic processes and benthic-pelagic coupling, in RREs, with the results expressed as basin-scale parameters. 3. Construction of closed budgets and coupled physical-biological research models for nutrient (especially nitrogen) and organic carbon cycling in RREs, allowing tests of hypotheses about biogeochemistry, water quality and the balance of organisms. 4. Construction of simplified 'screening' models for the definition, assessment and prediction of eutrophication, involving collaboration with 'end-users', and the use of these models to analyse the costs and benefits of amelioration scenarios.

Pathways Biological effects Sources Catchment studies Spatial trends Pollution sources Environmental management Contaminant transport Local pollution Sediments Temporal trends Ecosystems Eutrophication
9. Negative effects of UV radiation on organisms

Due to its high energy, UV radiation can induce severe damage at the molecular and cellular level. On the molecular level proteins and lipids, as well as nucleic acids are particularly affected. Conformation changes of certain proteins involved in photosynthesis, such as the reaction center protein (D1) of photosystem II or the CO2 fixing enzyme in the Calvin cycle (RuBisCo) lead to an inhibition of photosynthesis, and consequently to a decrease in biomass production. This might shift certain algal species into deeper waters, not reached by UV radiation. The aim of the studies is to demonstrate how strong an increase of UV radiation due to stratospheric ozone depletion will influence the depth distribution and biomass production of macroalgae, and which molecules and processes are most severely affected. Moreover, it will be studied, which stage in the life cycle of the individual species is most sensitive to UV radiation as it will be this particular stage, which in the end determines the upper distribution limit of a certain species on the shore.

Biology Marine algae UV radiation Seaweeds Environmental management Climate change Biodiversity Ecosystems
10. Submarine Operational And Research Environmental Database (SOARED)

The Submarine Operational And Research Environmental Database (SOARED)is comprised of a fixed relational environmental database using unclassified data collected during the Science Ice Exercises (SCICEX) during the past several years. It also includes publicly accessible gridded historical sound velocity, temperature and salinity data from 1900 from the US National Oceanographic Data Center. This project is a demonstration system to show ways to retrieve and analyze sound velocity, temperature and salinity profiles, bathymetry and ice thickness data using a mouse-driven GIS-based query.

Shelf seas Hydrography Mapping Spatial trends Sea ice Climate change Ice Oceanography Arctic GIS Data management Ocean currents Temporal trends
11. The Arctic sea ice ecosystem in recent environmental changes

Biological materials obtained in the central Arctic Ocean at the FSU “North Pole stations” in 1975-1981 have shown that the multi-year ice and ice/water interface is of rich and diverse biotop inhabited by the large number of diatoms and invertebrate animals. Two main matter fluxes in the sea ice ecosystem may be distinguished: (1) the inflow of biogenous elements from water into the ice interior where they are assimilated by the microflora during photosynthesis (summer stage), and (2) the outflow – from ice to water - of the organic matter accumulated in the summer due to photosynthesis (winter stage). Accumulation of organic matter within the sea ice interior during the process of photosynthesis may be considered as an energy depot for organisms of the whole trophic network of the arctic sea ice ecosystem. Recent data from the SHEBA Ice Camp drifted within the Beaufort Gyre 1997-1998 have shown that: (1) sea ice diatoms are very scarce by species and numbers; (2) fresh water green algae are dominated by numbers and distributed within the whole sea ice thickness; (3) invertebrate animals within the sea ice interior are not indicated; (4) invertebrate animals from the ice/water interface are scarce by species and numbers; (5) concentrations of chlorophyll and nutrients in the sea ice are significantly lower of the average concentrations measured before in this region for the same period of time. Remarkable accumulation of the organic mater within the sea ice interior were not indicated.

Biological effects taxonomy Biology Sea ice Climate change Arctic Ocean Ice Biodiversity Arctic production sea ice biota
12. Polar microbial ecology

Ecology of bacterioplankton and bacterioneuston in the polar seas, distribution, number, in situ heterotrophic activity, involvement in natural purification processes from oil pollution.

Biological effects heterotrophic bacteria oil biodegradation. number distribution Sea ice Environmental management Contaminant transport Petroleum hydrocarbons Arctic activity Polar seas
13. Greenland Right Whale

The ecology of the Greenland Right Whale is studied using the historical information from written sources from Dutch archives. The Spitsbergen and Davis Strait populations of the Greenland Right Whale were so heavily hunted that they are almost exterminated now in the northern waters. The whale bones on the beaches of Arctic islands are the archaeological evidences of this exhausting hunt. Very often whaling logbooks, crew statements and lists of catch figures are the only sources of information preserved of this animal in these regions. In this project recent biological information of the animal in the seas around Alaska and historical information of the whale in the North Atlantic and Davis Strait is used to reconstruct the migration, distribution and ecological behaviour of the Greenland Right Whale in the North Atlantic Ocean.

whaling Biology whales Populations Biodiversity Marine mammals
14. Monitoring the Atlantic Inflow toward the Arctic (MAIA)

The overall objective of MAIA is to develop an inexpensive, reliable system based on coastal sea-level data for monitoring the inflows of Atlantic Water to the northern seas. Available observation systems, including stan-dard tidal stations, will be used to obtain transport estimates with a time resolution of less than a week and show that the method is generic and can be applied to a similar monitoring of other regions.

Long-range transport Climate Sea ice Ice Oceanography Arctic Ocean currents
15. Polybrominated diphenylethers (PBDEs) in the Arctic environment

Polybrominated diphenyl ethers (PBDEs) are persistent and lipophilic compounds used as flame retardants in electronic equipment, plastic material and synthetic fibbers among other things. The PBDEs are mainly used as Deca-BDE and Bromokal 70-5DE, a mixture of tetra-, penta- and hexa-BDE. Due to its chemical and physical properties PBDEs, especially TeBDEs, tend to bioaccumulate. PBDEs were first reported in sediments in USA, and in fish from a Swedish river. More recently PBDEs have also been reported in seals, birds, mussels, whales and humans. In this study an SFE-method for rapid analysis of PBDEs in marine mammals was developed. This method was used to determinate the concentrations of these environmental pollutants in Pilot Whale samples caught in the Faroe Islands, Beluga Whales from the Arctic and Polar Bears from Svalbard. Using this method several PBDEs were analysed in the different species. In addition methoxylated PBDEs (Me-O-PBDE) were identified by interpretation of the different mass spectra’s. Of the 209 theoretical possible congeners only a few PBDE seem to accumulate in the environment. Accumulation of PBDE is related to the different chemical properties of the molecule. With the help of multivariate characterisation of a compound class using semi-empirical molecular orbital calculations, literature data and actual experimental measurements, the behaviour of PBDE in the environment can be modelled and predicted. Such models are essential in order to gain more insight in the behaviour of PBDE in the environment.

SFE extraction Long-range transport Brominated flame retardants Contaminant transport PBDE Supercritical fluid Terrestrial mammals Polybrominated diphenyl ethers Polar bear Persistent organic pollutants (POPs) Sediments Reproduction Marine mammals
16. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems
17. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
18. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness