To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Arctic Ocean as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.
The aims of the project are: - to evaluate the fluxes of radionuclides in the water column and their accumulation in the sediment, on a short-time scale; - to determine the C/N and delta13C-delta15N ratios in suspended and sedimentary matter, and test their use as tracers of origin, composition and transformation pathways of organic particles. The selected study area is the Kongsfjord-Krossfjord system, Svalbard, considered as representative test-site for studying processes occurring in Arctic fjords. The focus of the project will be on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer. Specific methods will be used to trace the particle sources. The rate of accumulation-resuspension processes will also be investigated from the inner fjord to the outer continental shelf.
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.
The expedition 'Arctic-2000' included climatic, hydrometeorological and hydrochemical studies in the eastern part of the Central Arctic Basin, during the period July-August 2000.
1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).
In September 1997, the CCGS Des Groseillers was frozen into the permanent ice-pack and started a year-long science program drifting across the southern Canada Basin. This program provided a unique opportunity to carry out a "vertical" food-chain study in a seasonal context to learn how the physical and biological systems couple to produce contaminant entry into the food web (Figure 1). "Vertical" components included the water and ice, particles, algae, zooplankton (sorted by trophic level), fish and seal.. The interpretation of contaminant data collected during SHEBA will provide information about the relationship between seasonal ice formation and melt, seasonal atmospheric transport and water column organochlorine concentrations in the Canada Basin. In addition our contaminant sampling program was integrated within a larger science plan where other SHEBA researchers studied the physical and biological properties of the water column. This means that contaminant distributions can be interpreted and modeled within the full context of physical, chemical and biological processes, and of atmospheric and oceanic transport mechanisms.