Arctic Ocean - Canadian Basin: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Arctic Ocean - Canadian Basin as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 5 of 5
1. Submarine Operational And Research Environmental Database (SOARED)

The Submarine Operational And Research Environmental Database (SOARED)is comprised of a fixed relational environmental database using unclassified data collected during the Science Ice Exercises (SCICEX) during the past several years. It also includes publicly accessible gridded historical sound velocity, temperature and salinity data from 1900 from the US National Oceanographic Data Center. This project is a demonstration system to show ways to retrieve and analyze sound velocity, temperature and salinity profiles, bathymetry and ice thickness data using a mouse-driven GIS-based query.

Shelf seas Hydrography Mapping Spatial trends Sea ice Climate change Ice Oceanography Arctic GIS Data management Ocean currents Temporal trends
2. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals
3. The Arctic sea ice ecosystem in recent environmental changes

Biological materials obtained in the central Arctic Ocean at the FSU “North Pole stations” in 1975-1981 have shown that the multi-year ice and ice/water interface is of rich and diverse biotop inhabited by the large number of diatoms and invertebrate animals. Two main matter fluxes in the sea ice ecosystem may be distinguished: (1) the inflow of biogenous elements from water into the ice interior where they are assimilated by the microflora during photosynthesis (summer stage), and (2) the outflow – from ice to water - of the organic matter accumulated in the summer due to photosynthesis (winter stage). Accumulation of organic matter within the sea ice interior during the process of photosynthesis may be considered as an energy depot for organisms of the whole trophic network of the arctic sea ice ecosystem. Recent data from the SHEBA Ice Camp drifted within the Beaufort Gyre 1997-1998 have shown that: (1) sea ice diatoms are very scarce by species and numbers; (2) fresh water green algae are dominated by numbers and distributed within the whole sea ice thickness; (3) invertebrate animals within the sea ice interior are not indicated; (4) invertebrate animals from the ice/water interface are scarce by species and numbers; (5) concentrations of chlorophyll and nutrients in the sea ice are significantly lower of the average concentrations measured before in this region for the same period of time. Remarkable accumulation of the organic mater within the sea ice interior were not indicated.

Biological effects taxonomy Biology Sea ice Climate change Arctic Ocean Ice Biodiversity Arctic production sea ice biota
4. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
5. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness