To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Arctic, Circumpolar as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Our knowledge of mercury fluxes on a global scale is still incomplete. Estimates indicate that Europe and North America contribute less than about 25 % to the global anthropogenic emissions of the element to the atmosphere. The majority of the remaining emissions originate from combustion of fossil fuels, particularly in the Asian countries including China, India, and South and North Korea. Even less and very controversial information is available on emissions of mercury from natural sources, including volatilization of the element from terrestrial and aquatic surfaces. In general, it is assumed that natural emissions of the element are about 3000 t/year, thus contributing more 60 % to the total global emissions of mercury. However, much work needs to be done in order to verify the above estimate.
(1) Collate information relating to the environmental transfer and fate of selected radionuclides through aquatic and terrestrial ecosystems in the Arctic. (2) Identify reference Arctic biota that can be used to evaluate potential dose rates to biota in different terrestrial, freshwater and marine environments (3) Model the uptake of a suite of radionuclides, both natural and anthropogenic to reference Arctic biota (4) Develop a reference set of dose models for reference Arctic biota (5) Compile data on dose-effects relationships and assessments of potential radiological consequences for reference Arctic biota (6) Integrate assessments of environmental impact from radionuclides with those for other contaminants.
The project consists of two parts: the generation of a data set of sea ice extents and areas, and associated scientific analyses. The objective of the first part is to produce a 30-year, research quality sea ice data set for climate change studies. The data set will build on an existing 18-year data set derived from satellite passive-microwave observations and currently archived at the National Snow and Ice Data Center in Boulder, CO. We will extend this data set by using historical data from the 1970's from the National Ice Center and new data from DMSP Special Sensor Microwave Imagers and the upcoming EOS-PM Advanced Microwave Scanning Radiometer. These data sets will be cross-calibrated to ensure a consistent 30-year data set following methods developed earlier and based on matching the geophysical parameters during periods of sensor overlap. The principal products will be Arctic and Antarctic sea ice extents and areas, derived from sea ice concentration maps. The second part of the proposal will center on the analysis and use of the 30-year data set. The science objectives are (1) to define and explain the hemispheric, regional, seasonal, and interannual variabilities and trends of the Arctic and Antarctic sea ice covers and (2) to understand any observed hemispheric asymmetries in global sea ice changes. Hemispheric sea ice cover asymmetries have been found in the existing 18-year record and have also been suggested from some model experiments simulating future conditions assuming a gradual increase in atmospheric CO2. We will examine the proposed 30-year record to determine the degree and nature of the hemispheric asymmetry in it and to place the sea ice observations in the context of other climate variables through comparisons with simulations from the NOAA Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models.
LONG TERM: Determine the effects, at the individual and population level, of persistent organic pollutants (POPs) and their metabolites in the polar bear; determine trend of POPs in the Arctic marine environment using polar bear tissues as a biomonitor. SHORT TERM: a. Determine 10-year temporal trends of POPs in the Hudson Bay Sub-Arctic Ecosystem from 1990-1989 by analysis of archived polar bear biopsy samples, including changes in enantiomeric composition of -HCH and chlordane compounds and ratio of -HCH/-HCH (cross-referenced to separate proposal on HCHs). b. Determine if there is selective tissue distribution of the enantiomers of chiral contaminants in polar bears, which may influence target organ toxicity, by analysis of archived polar bear samples. c. Determine the endocrine disrupting effect of POPs on testosterone and PCB metabolite profiles by in vitro metabolism studies using polar bear liver microsomes. d. In collaboration with CWS P&N Region, the Norwegian Polar Institute and the Norwegian Veterinary Institute, determine the immunotoxic effects of PCBs and other organochlorines in polar bears throughout a gradient of exposure (Hudson Bay, low; Svalbard, high). e. Determine the effects of hydroxy-PCBs on circulating thyroid hormone and vitamin A concentrations.
The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.