Arctic, Circumpolar: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Arctic, Circumpolar as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 18 of 18
1. Pollutants in air, monthly values, Precipitation chemistry, monthly sampling.Ozone measurements, passive sampling.S- and N-components in air with passive sampling.

 

This project is now part of the project: Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring Programme. National Environmental Monitoring Programme. The PMK Network is part of the national network for deposition measurements. The aim is (i) a long-term monitoring of concentration and deposition of selected air transported compounds caused acidification and eutrophication in different parts of Sweden; (ii) to generate knowledge about long-term variation in the field deposition, (iii) to give the background data from low polluted areas for calculation of pollutants deposition in more polluted areas the monitoring of pollutants in air and precipitations are proceed. Ozon and air samples for analysis of sulphur and nitrogen compounds, HCl as well as basic metal ions (Na, K, Ca, Mg, are taken on a monthly basis in air and precipitation. Ozone, as well as sulphur and the nitrogen compound particles are measured in air, and sulphur and nitrogen compounds, base cations, pH and electro-conductivity in precipitation.

acidification Arctic Atmosphere Contaminant transport Data management Dioxins/furans Eutrophication Exposure Local pollution Long-range transport Mapping ozone precipitation Temporal trends
2. Pollutants in air, daily values

 

This project is now part of the project : Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.

acidification air pollution Arctic Atmosphere Contaminant transport Data management Dioxins/furans EMEP Eutrophication Long-range transport Mapping Modelling ozone precipitation Spatial trends Temporal trends
3. Continual monitoring of the ozone layer.

National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.

Arctic Atmosphere Climate Data management Exposure Modelling national monitoring ozone UV radiation
4. FUVIRC-Finnish Ultraviolet International Research Centre

FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.

Arctic Atmosphere Biodiversity Biological effects Biology Climate change Ecosystems Forest damage Geophysics Human health ozone Populations Reindeer Temporal trends UV radiation
5. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
6. European Monitoring and Evaluation Prgramme - EMEP

The main objective of EMEP is to provide governments with information of the deposition and concentration of air pollutants, as well as the quantity and significance of the long-range transmission of air pollutants and their fluxes across boundaries (UNECE, 2004a). The EMEP observations include measurements of species linked to acidification, eutrophication, photochemical oxidants, heavy metals, persistent organic pollutants, and particulate matter.

 

 

acidification eurtrophication ozone POPs heavy metals short lived climate forcers
7. ATMospheric Fluxes from Arctic Snow Surfaces - ATMS

The central objectives of the proposed ATMAS project are:  to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund,  to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.

Atmospheric processes Ozone gaseous ammonia nitrogen bio-geochemical cycle Pollution sources Climate change tropospheric boundary layer nitrogen oxides Ice Emissions SNOW and SNOWPACK Arctic Data management photochemical production Atmosphere Human health
8. Chlorofluorocarbons, Hydrogenated Halocarbons and Degradation Products of the Hydrogenated Halocarbons in the Arctic Environment

Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.

Atmospheric processes Ozone Climate Climate change Emissions Atmosphere
9. Cloud Effects on UV Irradiance Measurements (CEUVIM)

The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.

Atmospheric processes Ozone UV solar radiation UV radiation Climate change Atmosphere Clouds effects
10. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends
11. Differential Optical Absorption Spectrometer

The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.

Ozone Geophysics Modelling Arctic Atmosphere Temporal trends
12. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
13. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
14. Descartes

Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden

Atmospheric processes Ozone Geophysics Chlorofluorocarbons (CFC) Emissions Arctic Atmosphere Temporal trends
15. Quantitative Understanding of Ozone losses by Bipolar Investigations (QUOBI)

By launching several hundred ozonesondes at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differences given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution.

Ozone
16. Satellite validation for SAGE III (contribution to VINTERSOL/SOLVE-2)

In december 2001 the SAGE III experiment was successfully launched. The NASA science team of the SAGE III experiment has announced the Koldewey-Station in Ny-Aalesund as "anchor site" for validation, especially for such parameters as optical depth, aerosol extinction profiles and ozone profiles. Because of time coincidence NASA apprechiates support for the prospected validation activities for ENVISAT. This should be also considered as contribution to the NASA accepted project "Ground based Validation of SAGE III by the NDSC Primary Station at Ny-Ålesund, Spitsbergen" for SOLVE-2.

Ozone Climate variability SAGE III Climate change Arctic satellite validation
17. Validation of SAGE III satellite data

SAGE III was successfully launched on 10. Dec. 2001 on a Russian M3 rocket. It provides accurate data of aerosols, water vapour, ozone, and other key parameters of the earth's atmosphere. The science team of the SAGE III experiment at NASA has nominated the Koldewey-Station as an anchor site to contribute within the Data Validation Plan as part of the Operational Surface Networks. Data directly relevant to the SAGE III validation are aerosol measurements by photometers and lidar, as well as temperature measurements and ozone profiling by balloon borne sondes, lidar and microwave radiometer. Data will be provided quasi online for immediate validation tasks.

Atmospheric processes ozone UV radiation trace gases Geophysics Climate variability Climate Climate change aerosol water vapour Data management Atmosphere water vapor satellite validation
18. Contributions to the THESEO 2000 / SOLVE campaign

In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE/THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation exercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributed to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The main observation periods were from December 1999 to March 2000.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere