To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Alaska as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Within the State of Alaska, the Alaska Surveillance, Epidemiology and End Results (SEER) program collects and publishes cancer data as part of the National Cancer Institute’s overall SEER program, and the Alaska Native Stroke Registry is a project to increase the understanding of stroke in Alaska Natives, with the goal of improving stroke care. Circumpolar linkage of such networks would facilitate international collaboration, international standardization of data collection international comparison of comparable data, thereby greatly adding to our knowledge of Arctic health, and enhancing design of treatment and prevention.
The NCOP collects, analyzes, and disseminates observations and predictions of tidal currents for over 2,700 locations throughout the United States. The NCOP conducts annual tidal current surveys in various locations which deploy current meters for 30-90 days to acquire enough data to generate accurate tidal current predictions. Main gaps: NOAA maintains tidal current predictions at approximately 2,750 locations. However, there are little historical data north of the Aleutian chain, and those data are very old.
The NWLON is a network of long term stations whose fundamental purpose is to provide vertical control (tidal datums) that support a host of national requirements. In addition, the NWLON collects continuous water level data and provides observations and derived data products that support: marine transportation and navigation ( hydrographic charting surveys, shoreline mapping surveys, tide predictions, forecast water levels, real time observations, dredging projects, hazardous material spill response); global sea level rise studies, storm surge and tsunami detection and warnings, marine boundary determination (federal/state, state/private, state/state), coastal zone management activities, ecosystem restoration, and effective marine spatial planning. Main gaps: Gap analysis report completed in FY2008 identifying gaps based primarily on providing vertical (tidal datum) control. Largest gaps in Arctic region – gaps in data and information in Bristol Bay, Bering Sea, Bering Strait, Chukchi Sea, and Beaufort Sea areas.
To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.
1) Annual monitoring of molting Greater White-fronted Geese (Interior refuges) 2) Waterfowl (primarily) breeding pair survey (MBM- done 1997, 2008-09) 3) Breeding Bird Survey (2 routes; annual, though not in 2009) 4) Alaska Landbird Monitoring Survey (2 plots; biennial) 5) Refuge moose population survey (annual) 6) Refuge wolf survey (annual as conditions allow; minimum census) 7) Henshaw Creek fish weir (annual; TCC = operator) 8) Stream gages (operational Oct 2009; will operate at least 6 years) 9) Snow markers (6 on refuge; checked monthly in winter; statewide??)
To inventory and monitor resources of the Yukon Flats Basin to achieve refuge purposes.
(1) Monitor the subsistence and handicraft harvest of polar bears, sea otters and walrus; (2) Obtain essential biological data needed to manage; and (3) Help prevent the illegal take, trade and transport of specified raw marine mammal parts. The Marine Mammal Protection Act of 1972 allows Alaska Natives to harvest marine mammals for subsistence uses. The Marine Mammal Protection Act (pdf) requires that all sea otter and polar bear hides and skulls, and all walrus tusks be tagged by a representative of the U.S. Fish and Wildlife Service. This program is implemented through resident MTRP taggers located in coastal villages and communities throughout Alaska. There are more than 150 taggers located in about 100 villages. The information collected by the MTRP will help ensure the long-term survival of these species by monitoring the Native harvest and controlling the illegal take, trade, and transport of marine mammal parts. To find out how to contact taggers, call John Trent at 1-907-786-3815 or 1-800-362-5148. Main gaps: The MTRP harvest data are for 3 stocks of northern sea otter and, with data provided by Russian authorities, for the one stock of Pacific walrus. Polar bear harvest for the Chukchi Sea and southern Beaufort Sea polar bear stocks are for US communities only. Additional harvest occurs in Canada but is accounted for by the Inuvialuit-Inupiat Agreement of 1988. In the largest Alaska walrus harvesting communities, MTRP data are supplemented and independently assessed by a Walrus Harvest Monitoring Program (WHMP) that has existed, more or less continuously since 1960. This program also collects biological specimens. The contact for WHMP is Jonathan_Snyder@atfws.gov. Mr. Snyder is also in the Office of Marine Mammals Management, Region 7, USFWS MS 341 1011 East Tudor Road, Anchorage AK, 99503. Network type: Subsistence harvest data on polar bears and northern sea otters are collected from hunters in Alaska coastal communities.
Connect public health laboratories and institutes throughout the circumpolar north for the purposes of monitor infectious diseases of concern. Main gaps: russia
Persistent organic pollution is a global problem. This fact is especially apparent in the Arctic where pesticides currently used in distant environments accumulate, in some cases to higher levels than those observed in the source region. This pollution threatens the well-being of the aboriginal inhabitants of these regions. Most of the traditionally harvested animals in the Arctic are long-lived and from the higher trophic levels of the food chain, thereby providing an opportunity for considerable bioaccumulation and biomagnification of persistent contaminants. This has prompted a growing concern by the Alaska Inupiat that pollutants in the environment might be contributing to their unique morbidity and mortality rates, especially of their children. Our studies are currently focused on two specific organic pollutants found in the Arctic environment; 1}hexachlorobenzene (HCB), a byproduct during manufacture of several different chlorinated compounds and consistently detected in the Arctic and, 2} dichlorodiphenyl dichloroethylene (p,p’-DDE), a chlorinated environmental breakdown product measured in the Arctic population at significantly higher concentrations than the parent pesticide, DDT. We hypothesize that mammalian embryonic cell exposure to these chemicals, individually or as mixtures at environmentally relevant concentrations and ratios, will alter the cell cycle and/or cause death by apoptosis, rather than by necrosis. We also predict synergistic cytotoxicity of the chemical mixture because of an accumulation of deleterious effects at different cellular target sites by each chemical. We further hypothesize that while some chemicals target non-genetic cellular components (such as a cell membrane or cytosolic component), other chemical effects will occur primarily at the genetic level, directly or indirectly. Our experiments have been designed as a set of sensitive cellular and molecular assays to compare levels and types of cytotoxic and genotoxic activity of the above chemicals (individual and mixture), at environmentally relevant concentrations, upon embryonic cells in culture. Our experimental evidence thus far is that these chemicals, separately or as a mixture at concentrations and molar ratios relevant to that measured in the Arctic environment, do have cytotoxic and/or genotoxic effects that could result in profound consequences to exposed tissues of a developing embryo or fetus. We have further experimental evidence that exposure to both chemicals at environmentally relevant concentrations is more toxic to the cell than the sum of effects by exposure to the individual chemicals. Experimental results indicate this is due to different cellular target sites for each chemical (Appendix A: Preliminary Results).