To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Alaska, North Slope as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.
Contaminants were examined for trends over time, spatial variation based on disparate breeding areas, and relationships with measures of productivity. Most organochlorines and metals declined over time. Mercury was the only contaminant with possibly increasing concentrations in eggs. Egg and feather samples collected in 2000 will provide more information on mercury trends and effects. This study embodies 20 years of data on environmental contaminants in peregrine falcons nesting in Alaska.
The overall project outlined in this proposal represents a series of interrelated studies designed to answer questions regarding the effects of disturbance on distribution and abundance of waterfowl and marine birds. The primary studies (i.e., aerial surveys) are directly related to the objectives identified in the Minerals Management Service (MMS) Statement-of-work regarding Monitoring Beaufort Sea Waterfowl and Marine Birds near the Prudhoe Bay Oil Field, Alaska. Additionally, we plan to include the ‘optional’ studies on eiders using off-shore barrier island habitats. Finally, we propose to conduct ground based studies designed to enhance and expand the interpretation of the aerial surveys. The specific objectives of this study are: 1. Monitor Long-tailed Duck and other species within and among industrial and control areas in a manner that will allow comparison with earlier aerial surveys using Johnson and Gazeys’ (1992) study design. a) Perform replicate aerial surveys of five previously established transects based on existing protocol (OCS-MMS 92-0060). b) Expand the area from original surveys to include near-shore areas along Beaufort Sea coastline between the original “industrial” (Jones-Return Islands) and “control” (Stockton-Maguire-Flaxman Islands) areas. c) Define the range of variation for area waterfowl and marine bird populations. Correlate this variation with environmental factors and oil and gas exploration, development, and production activities. 2. Expand aerial monitoring approximately 50 km offshore. Surveys will target Spectacled, Common and King eiders. The goal is to sample areas potentially impacted by oil spills from the Liberty, Northstar, and/or Sandpiper Units. 3. Develop a monitoring protocol for birds breeding on barrier islands, particularly Common Eiders. These data will be compared to historic data summarized by Schamel (1977) and Moitoret (1998). 4. Examine relationships between life-history parameters (e.g., fidelity, annual survival, productivity) and ranges of variation in Long-tailed Ducks and Common Eider distribution and abundance to enhance interpretation of cross-seasonal effects of disturbance. That is, the combination of aerial and ground based work has the potential to both document changes in abundance/distribution and describe those changes in terms of movements of marked individuals. Parameters will be examined in relation to disturbance using the two-tiered approach developed by Johnson and Gazey (1992). 5. Recommend cost-effective and feasible options for future monitoring programs to evaluate numbers and species of birds potentially impacted by oil spills involving ice-free and ice periods in both inshore and offshore waters.
White whale (Delphinapterus leucas) blubber samples from three of the five different Alaskan stocks - Cook Inlet (n = 20), Eastern Chukchi Sea (n = 19) and Eastern Beaufort Sea (n = 2) - were analyzed for levels and patterns of chemical contaminants. Blubber of these whales contained sum PCBs, sum DDTs, sum chlordanes, HCB, dieldrin, mirex, *toxaphene and *HCH, generally in concentration ranges similar to those found in white whales from the Canadian Arctic and lower than those in white whales from the highly contaminated St. Lawrence River. The males of the Cook Inlet and Eastern Chukchi Sea stocks had higher mean concentrations of all contaminant groups than did the females of the same stock, a result attributable to the transfer of these organochlorine contaminants (OCs) from the mother to the calf during pregnancy and during lactation following birth. Principal components analysis of patterns of contaminants present in blubber showed that Cook Inlet stock appeared to have identifiable contaminant patterns that allowed the stock to be distinguished from the others. Our results also showed that blubber from the three Alaskan stocks was a source of contaminant exposure for human subsistence consumers, but the health risks from consumption are currently unknown.
Blubber samples from Alaska ringed seal (Phoca hispida) were collected for inclusion in the US National Biomonitoring Specimen Bank, as well as for immediate analysis as part of the contaminant monitoring component of the US National Marine Fisheries Service's Marine Mammal Health and Stranding Response Program. The blubber samples were analyzed for organochlorine (OC) contaminants (e.g., PCB congeners, pesticides, DDTs). Results for ringed seals from the Alaska Arctic revealed low blubber concentrations of OC contaminants. Differences in contaminant concentrations among the Alaska seals may be explained by differences in feeding habits and migratory patterns; age or gender did not appear to account for the differences observed. The integration of real-time contaminant monitoring with specimen banking provides important baseline data that can be used to plan and manage banking activities. This includes identifying appropriate specimens that are useful in assessing temporal trends and increasing the utility of the banked samples in assessing chemical contaminant accumulation and relationships to biological effects.
I. Objectives: I.1. To determine the normal range of values (natural variability due to time of year, age, gender) for basic nutritional and health parameters (blubber characteristics, essential and non-essential elements, structure of basic tissues) in the bowhead whale. a. Blubber thickness (depth and girth), chemical composition (lipids, water, calories), and tissue structure (light microscopy and special stains) will be assessed. b. Essential and non-essential elements (heavy metals) will be measured in liver and kidney. c. Tissue structure (light microscopy) characteristics obviously related to nutritional status in liver (glycogen, lipid and lipofuscin stores), pancreas (zymogen granules), and intestine (mucosal microvilli) and any evidence of inactivity/atrophy will be examined. d. Documentation of "normal" structure of basic tissues and evaluation for evidence of disease will also be conducted. I.2. Using data from Objective 1 to identify the parameters most important in assaying the health status of other mysticetes residing in the Bering Sea or Western Arctic that are harvested or stranded. I.3. Using data from Objective 1 to help determine the role of the bowhead whale as an indicator of ecosystem health and development of an optimized protocol for assessing mysticete health for the Bering Sea and Western Arctic, and other regions.
1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).