High levels of ultraviolet (UV-B) radiation (280 to 320 nm wavelength) have been shown to be responsible for biologically harmful effects in both plants and animals. Atmospheric gases and suspended particulate matter (aerosols) absorb UV-B, the most important of which is stratospheric ozone. Because ozone in the stratosphere absorbs energy in the UV-B portion of the solar spectrum, any changes in the total amount of ozone affects the levels of UV-B reaching the ground. The potential for excessive stratospheric ozone loss in the Arctic makes the monitoring of actual variations in the billogically sensitive regions of the UV spectrum particularly important, especially since the Arctic supports a significant human population. In 1997 and 1998, with support from a new NOAA Arctic Research Initiative, NOAA deployed portable, ground-based UV instruments at three sites in Alaska: the CMDL Observatory in Barrow and the National Weather Service facilities in Nome and on St. Paul Island. Over the past decade, there has been a significant downward trend in Arctic ozone levels. Current predictions for future Arctic ozone levels indicate continued depletion for at least ten years and a very slow and possibly incomplete recovery. The observed changes in ozone in the Arctic have been accompanied by increased UV radiation, primarily in the spring. The potential for continued stratospheric ozone loss in the Arctic makes the monitoring of biologically damaging UV particularly important, since the Arctic is home to a human population and supports a variety of aquatic and terrestrial species.
NOAA Arctic Research Initiative NOAA Cooperative Institute for Arctic Research
$118K in 2000 $129K requested in 2001