The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
Persistent organic pollution is a global problem. This fact is especially apparent in the Arctic where pesticides currently used in distant environments accumulate, in some cases to higher levels than those observed in the source region. This pollution threatens the well-being of the aboriginal inhabitants of these regions. Most of the traditionally harvested animals in the Arctic are long-lived and from the higher trophic levels of the food chain, thereby providing an opportunity for considerable bioaccumulation and biomagnification of persistent contaminants. This has prompted a growing concern by the Alaska Inupiat that pollutants in the environment might be contributing to their unique morbidity and mortality rates, especially of their children. Our studies are currently focused on two specific organic pollutants found in the Arctic environment; 1}hexachlorobenzene (HCB), a byproduct during manufacture of several different chlorinated compounds and consistently detected in the Arctic and, 2} dichlorodiphenyl dichloroethylene (p,p’-DDE), a chlorinated environmental breakdown product measured in the Arctic population at significantly higher concentrations than the parent pesticide, DDT. We hypothesize that mammalian embryonic cell exposure to these chemicals, individually or as mixtures at environmentally relevant concentrations and ratios, will alter the cell cycle and/or cause death by apoptosis, rather than by necrosis. We also predict synergistic cytotoxicity of the chemical mixture because of an accumulation of deleterious effects at different cellular target sites by each chemical. We further hypothesize that while some chemicals target non-genetic cellular components (such as a cell membrane or cytosolic component), other chemical effects will occur primarily at the genetic level, directly or indirectly. Our experiments have been designed as a set of sensitive cellular and molecular assays to compare levels and types of cytotoxic and genotoxic activity of the above chemicals (individual and mixture), at environmentally relevant concentrations, upon embryonic cells in culture. Our experimental evidence thus far is that these chemicals, separately or as a mixture at concentrations and molar ratios relevant to that measured in the Arctic environment, do have cytotoxic and/or genotoxic effects that could result in profound consequences to exposed tissues of a developing embryo or fetus. We have further experimental evidence that exposure to both chemicals at environmentally relevant concentrations is more toxic to the cell than the sum of effects by exposure to the individual chemicals. Experimental results indicate this is due to different cellular target sites for each chemical (Appendix A: Preliminary Results).
According to the national residue control programme heavy metals (lead, cadmium, mercury) and organochlorine compounds (HCH, HCB, DDT, PCB, etc) are analyzed from the samples. Investigations are done according to the Council Directive 96/23/EC.
The objective of this project is to obtain a comprehensive and verifiable information on contaminant exposure of indigenous populations of the Russian Barents Region through aquatic food. Subgoals: To evaluate the contaminant uptakes for blood samples that have been collected by health workers from local indigenous populations, focusing on cord blood levels. To connect and integrate the project and protocols with the ongoing cord blood study of indigenous peoples of Alaska and Eastern Russia, lead by dr. Jim Berner and others in the region.
Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.
This study investigates possible detrimental effects on the immune system of Inuit infants which may be induced by prenatal and postnatal (breast feeding) exposure to persistent environmental contaminants such as organochlorine compounds. These substances accumulate in the body of Inuit women in part due to their consumption of sea mammal fat and can be transferred to the foetus during pregnacy and to the infant during breast feeding. Immune system function will be evaluated using several parameters: 1) the level of antibody produced by the infant following Haemophilus influenza immunization; 2) the level of proteins which protect the infant against bacterial infections (complement system) before its immune system is fully developed; and 3) the level of chemical messengers (cytokines) which enable the various cells of the immune system to communicate with each other, thereby maintaining its proper function and assuring the protection of the infant against bacteria, parasitic and viral infections.
Analysis of POP and heavy metals, in men and women (pregnant and non-pregnant), time and spatial trends, lifestyle factors, diet and smoking, biomarkers
The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.
Objectives: 1. Locate and assemble scientific data from the U.S. Arctic on the concentrations and effects of POPs in all compartments (e.g., marine and terrestrial biota, abiotic substrates) of the Arctic. 2. Evaluate, analyze and summarize these scientific data from the U.S. Arctic into text suitable for inclusion in a new (second) AMAP publication on POPs. 3. Disseminate the summarized information via a U.S. AMAP Internet page that is directly linked to the current International AMAP Internet page. Summary (Abstract): The Arctic Monitoring and Assessment Programme (AMAP) was established in 1991 and given the responsibility of monitoring the concentrations and assessing the effects of selected anthropogenic pollutants in all compartments of the Arctic. The first AMAP assessment report, published in 1998, points out gaps in our current understanding of contaminant inputs, their transport processes and food web interactions. In addition, the AMAP report noted a serious lack of information about persistent organic pollutants (POPs) in the U.S. and Russian Arctic. Thus, the recommendations of the first AMAP report were to: monitor spatial distribution, contaminant levels and biological effects of POPs; improve the understanding of the adverse effects of POPs on human populations; and fill existing data gaps, specifically in the U.S. and Russia. In this work, we plan to identify sources of scientific information (e.g., published reports, datasets) on POPs in the U.S. Arctic and obtain these data for AMAP. Once data sources are identified, a small group of scientific experts will be assembled for a workshop to determine if any pertinent sources have been overlooked and to give advice on how best to evaluate, analyze, summarize and disseminate the information obtained. A working database will be designed so that the data and scientifically important findings or conclusions from each study can be organized and evaluated. Data will be analyzed statistically, as appropriate, to determine spatial and temporal trends. The data and scientific findings that have been collected and analyzed will then be summarized into text, for inclusion in the next AMAP publication on POPs. This major effort of synthesizing the existing data from the U.S. Arctic will ensure that the AMAP report adequately presents the accomplishments of U.S. scientists and research programs. The written publication and the summarized U.S. POPs data will also be presented as a U.S. AMAP Internet page linked to the International AMAP Internet page.