Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 98 of 98
81. Yukon Traditional Foods Monitoring Program

Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.

Biological effects Pollution sources Contaminant transport Caribou Dioxins/furans Pesticides Human intake Pathways Biology Populations Organochlorines PCBs Heavy metals Fish Indigenous people PAHs Long-range transport Spatial trends Petroleum hydrocarbons Terrestrial mammals Persistent organic pollutants (POPs) Local pollution Food webs Data management Diet Temporal trends Human health Ecosystems
82. Arctic Research Initiative

Research in the NOAA OAR Arctic Research Office Activities Supported by Base Funds in FY2000 Joint IARC/CIFAR Research In FY2000, the NOAA Arctic Research Office developed a partnership with the National Science Foundation and the International Arctic Research Center at the University of Alaska to conduct a research program focused on climate variability and on persistent contaminants in the Arctic. This partnership resulted from a unique confluence of mutual interest and unexpected funding that NSF chose to obligate through NOAA because of NOAA's on-going joint programs at the University of Alaska. NSF anticipates establishing its own institutional arrangement with the University of Alaska in the future. The research initiated in FY2000 focused on 5 climate themes and 1 contaminant theme, with several specific topics associated with each: A. detection of contemporary climate change in the Arctic changes in sea ice role of shallow tundra lakes in climate comparison of Arctic warming in the 1920s and the present variability in the polar atmosphere dynamics of the Arctic Oscillation downscaling model output for Arctic change detection long-term climate trends in northern Alaska and adjacent Seas B. Arctic paleoclimate reconstructions drilling in the Bering land bridge Arctic treeline investigation Mt. Logan ice core test models to simulate millennial-scale variability C. Atmosphere-ice-land-ocean interactions and feedbacks impact of Arctic sea ice variability on the atmosphere model-based study of aerosol intrusions into the Arctic international intercomparison of Arctic regional climate models reconstruction of Arctic ocean circulation intercomparison of Arctic ocean models Arctic freshwater budget variation in the Arctic vortex role of Arctic ocean in climate variability Arctic Oscillation and variability of the upper ocean D. Arctic atmospheric chemistry assessment of UV variability in the Arctic Arctic UV, aerosol, and ozone aerosols in the Finnish Arctic inhomogeneities of the Arctic atmosphere aerosol-cloud interactions and feedbacks Arctic haze variability E. Impacts and consequences of global climate change on biota and ecosystems in the Arctic linking optical signals to functional changes in Arctic ecosystems marine ecosystem response to Arctic climate changes faunal succession in high Arctic ecosystems long-term biophysical observations in the Bering Sea cryoturbation-ecosystem interactions predicting carbon dioxide flux from soil organic matter F. Contaminant Sources, Transport, Pathways, Impacts using apex marine predators to monitor climate and contamination change trends in atmospheric deposition of contaminants assessment of data on persistent organic pollutants in the Arctic paleorecords of atmospheric deposition derived from peat bog cores toxicological effects of bio-accumulated pollutants Under these themes, 45 research projects were initiated that will continue into 2001. The support for these projects totals $8 million over two years, of which only $1 million comes from NOAA. This tremendous leverage cannot be expected to continue; however the Arctic Research Office will continue its interactions with the International Arctic Research Center and seek collaborative efforts whenever possible. Arctic Climate Impact Assessment The United States has agreed to lead the other seven Arctic countries to undertake an Arctic Climate Impact Assessment (ACIA). This assessment will culminate in 2002 with a peer-reviewed report on the state of knowledge of climate variability and change in the Arctic, a set of possible climate change scenarios, and an analysis of the impacts on ecosystems, infrastructure, and socio-economic systems that might result from the various climate change scenarios. NOAA and NSF will provide support in FY2000, with the ARO providing early support and leadership for planning the ACIA. Scientific Planning and Diversity The Arctic Research Office will support scientific planning, information dissemination, and NOAA's diversity goals through workshops and other activities. An international conference on Arctic Pollution, Biomarkers, and Human Health will be held in May, 2000. The conference is being organized by the National Institutes of Environmental Health Sciences, with co-sponsorship by NSF and the Arctic Research Office. Research planning activities are being supported that will lead to future program activities related to climate variability and change and to impacts from contamination of the Arctic. The Study of Environmental Arctic Change (SEARCH) is being planned on an interagency basis, with the Arctic Research Office providing input for NOAA. An Alaskan Contaminants Program (ACP) is under development, with leadership coming from organizations within the state of Alaska. To accelerate the flow of minorities into scientific fields of interest to NOAA, the Arctic Research Office will undertake an effort in conjunction with Alaskan Native organizations that will encourage young Native students to obtain degrees in scientific fields. Outlook to FY2001 The Arctic Research Office will use resources available on FY2001 to begin implementation of the interagency Arctic climate science plan "Study of Environmental Arctic Change" (SEARCH). The NOAA/ARO role in SEARCH will involve long-term observations of the ocean, atmosphere and cryosphere, improved computer-based modeling of climate with an emphasis on the Arctic, and diagnostic analysis and assessment of climate data and information from the Arctic. Funds available in FY2001 will permit planning and limited prototype observation and modeling activities. The role of the NOAA/ARO in the Alaska Contaminants Program will become during the last half of FY2000, and some initial activities may be undertaken in FY2001. In addition, the NOAA/ARO will continue its partial sponsorship of the Arctic Climate Impact Assessment, being pursued on an international basis with the involvement of all 8 Arctic countries. It is anticipated that the ARO will provide support to experts to produce portions of the draft state-of-knowledge report during FY2001 and conduct one or more review workshops.

Biological effects Atmospheric processes Climate variability Contaminant transport Climate change Arctic Persistent organic pollutants (POPs) SEARCH
83. The Seasonal Cycle of Organochlorine Concentrations in the Canadian Basin

In September 1997, the CCGS Des Groseillers was frozen into the permanent ice-pack and started a year-long science program drifting across the southern Canada Basin. This program provided a unique opportunity to carry out a "vertical" food-chain study in a seasonal context to learn how the physical and biological systems couple to produce contaminant entry into the food web (Figure 1). "Vertical" components included the water and ice, particles, algae, zooplankton (sorted by trophic level), fish and seal.. The interpretation of contaminant data collected during SHEBA will provide information about the relationship between seasonal ice formation and melt, seasonal atmospheric transport and water column organochlorine concentrations in the Canada Basin. In addition our contaminant sampling program was integrated within a larger science plan where other SHEBA researchers studied the physical and biological properties of the water column. This means that contaminant distributions can be interpreted and modeled within the full context of physical, chemical and biological processes, and of atmospheric and oceanic transport mechanisms.

Pathways Organochlorines PCBs Long-range transport Spatial trends Sea ice Contaminant transport Climate change Oceanography Persistent organic pollutants (POPs) Geochemistry Food webs Temporal trends
84. Transplacental Exposure to PCBs and Infant Development/Human Exposure Assessment.

The main purpose of this research is to examine the consequences of in utero exposure to PCBs on Inuit infants, from birth to 11 months of age. Of particular interest is the impact of PCBs and mercury exposure on newborn’s thyroid hormones, physical growth, physical and central nervous system maturity, on infant’s overall health, mental, psychomotor and neurobehavioral development, and on functional and neural impairment in the domains of visual and spatial information processing. The proposed project is designed to replicate and extend previous findings by studying a more highly exposed cohort of infant, and using new infant assessment paradigms that have been linked to specific brain regions and neural pathways and, therefore, have a potential to provide information regarding possible mechanisms of action. The second objective of this research is to document the exposure to heavy metals, organochlorines and polyunsaturated fatty acids of newborns from selected communities in Nunavik. This ongoing effect study provides the opportunity to perform long time trend analysis of human exposure (data available for same communities since 1993).

Organochlorines PCBs Heavy metals Indigenous people Exposure Persistent organic pollutants (POPs) Reproduction Temporal trends Human health
85. Case-control study of Smoking and POP in plasma

Case control study of the possible effect of smokinf status on the acumulation of plasma POP in 48 Greenlandic hunters.

POP accumulation biomarkers Smoking Persistent organic pollutants (POPs) Diet Human health
86. Follow-up of preschool aged children exposed to PCBs and mercury through fish and marine mammal consumption.

The purpose of this research is to examine the long term consequences of prenatal exposure to PCBs and MeHg. This project is designed to study domains of effects overlooked in most of the previous studies. Of particular interest is the impact of exposure on neurophysiological and neurological endpoints that could be related to learning difficulties and disabilities. This study will support the health risk assessment process by providing dose-effect analysis for the neurophysiological and neurological domains of effects of preschool age children from Nunavik (Canada). The total sample will comprise 100 Nunavik Inuit children aged 5-6years. The following exclusion criteria will be applied: Apgar below 5 at 5 minutes of life, evidence of birth trauma, less than 37 weeks of gestation and less than 2500 grams at birth, congenital or chromosomal anomalies, epilepsy, significant disease history, major neurological impairment, fetal alcohol syndrome, presence of facial dysmorphologies associated with fetal alcohol effects.

Organochlorines PCBs Heavy metals Persistent organic pollutants (POPs) Human health
87. AMAP Human Health Programme for Greenland 2000

Analysis of POP and heavy metals, in men and women (pregnant and non-pregnant), time and spatial trends, lifestyle factors, diet and smoking, biomarkers

Heavy metals Spatial trends Persistent organic pollutants (POPs) Diet Temporal trends Human health
88. Contaminants in Greenland Human Diet

Humans in Greenland are exposed to higher intakes of some contaminants from the diet than in most of Europe and North America. The objective of the study is to screen the most important local diet items in West Greenland for cadmium, mercury, selenium and organochlorine contaminants. Mammals, birds, fish and invertebrates, mainly marine species are being analysed.

Organochlorines PCBs Heavy metals Fish Caribou Terrestrial mammals Exposure Persistent organic pollutants (POPs) Seabirds Reindeer Pesticides Diet Human health Human intake Marine mammals
89. Chemical Analysis of Toxaphene, PCB and Chlorinated Pesticides.

The aim of the project is to develop a method for analysis of toxaphene in biota from the marine environment. The project includes a modification/improvement of the method of the chemical analysis of PCBs and cholrinated pesticides used at the Danish Environmental Research Institute.

PCBs Fish Toxaphene Exposure Arctic Persistent organic pollutants (POPs) Seabirds Data management Pesticides Gas Chromatography Negative Ionisation Mass Spectroscopy
90. Quality Assurance of AMAP data

The aim of this project is to conduct quality assurance on the data of organic contaminants obtained in the Greenland / Faroe Islands / Denmark part of the AMAP projects.

Organochlorines PCBs Fish Arctic Persistent organic pollutants (POPs) Seabirds Data management Marine mammals
91. Effects and Trends of POPs on Polar Bears

LONG TERM: Determine the effects, at the individual and population level, of persistent organic pollutants (POPs) and their metabolites in the polar bear; determine trend of POPs in the Arctic marine environment using polar bear tissues as a biomonitor. SHORT TERM: a. Determine 10-year temporal trends of POPs in the Hudson Bay Sub-Arctic Ecosystem from 1990-1989 by analysis of archived polar bear biopsy samples, including changes in enantiomeric composition of -HCH and chlordane compounds and ratio of -HCH/-HCH (cross-referenced to separate proposal on HCHs). b. Determine if there is selective tissue distribution of the enantiomers of chiral contaminants in polar bears, which may influence target organ toxicity, by analysis of archived polar bear samples. c. Determine the endocrine disrupting effect of POPs on testosterone and PCB metabolite profiles by in vitro metabolism studies using polar bear liver microsomes. d. In collaboration with CWS P&N Region, the Norwegian Polar Institute and the Norwegian Veterinary Institute, determine the immunotoxic effects of PCBs and other organochlorines in polar bears throughout a gradient of exposure (Hudson Bay, low; Svalbard, high). e. Determine the effects of hydroxy-PCBs on circulating thyroid hormone and vitamin A concentrations.

Biological effects Organochlorines PCBs Long-range transport Spatial trends Pollution sources Terrestrial mammals Polar bear Exposure Arctic Persistent organic pollutants (POPs) Dioxins/furans Temporal trends Marine mammals
92. Northern Contaminants Air Monitoring: Organochlorine Measurements

The objectives of this project are: A) to determine whether atmospheric concentrations and deposition of priority pollutants in the Arctic are changing in response to various national and international initiatives by: i) continuing to measure the occurrence of selected organochlorines in the arctic atmosphere at Alert, NWT for a period of three more years (measurements started in 1992), in parallel with identical measurements in western Russia at Amderma; ii) sampling at the Kinngait (Cape Dorset) station in 2000/2001 for the purpose of detecting change in the eastern Canadian Arctic by comparison with observations made four years earlier (1994-1996) at this site; and iii) analyzing and reporting data from Alert, Tagish, Kinngait and Dunai Island thereby providing insight into pollutant trends and sources. B) Ensuring the effective utilization of information at the international negotiating table in order to achieve the appropriate restrictions on release of pollutants of concern for the arctic environment by: i) contributing to the next assessment arising from the second phase of the Northern Contaminants Program (Canada) and specifically, the revised Assessments on POPs and Heavy Metals as part of the Arctic Monitoring and Assessment (AMAP) Program Work Plan; and ii) advising Canadian negotiators in preparing reasonable, practical strategies of control.

Organochlorines PCBs PAHs Long-range transport Contaminant transport Arctic Persistent organic pollutants (POPs) Data management Pesticides Atmosphere
93. New Persistent Chemicals in the Arctic Environment

The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.

Sources PCAs BDPEs Pollution sources Exposure monitoring chloroparaffins Sediments Pesticides SCCPs Human intake Marine mammals new chemicals polychlorinated naphthalenes Pathways Organochlorines PCBs chlorinated paraffins Long-range transport brominated diphenyl ethers Spatial trends HAAs Arctic PCNs Persistent organic pollutants (POPs) synthetic musks haloacetic acids Atmosphere polychlorinated alkanes
94. Global Gridded gamma-HCH and Endosulfan Emission Inventories

The aim of this project is to compile information and create a computerized database of historical and present global lindane and endosulfan usage data as well as emission data for gamma-hexachlorocyclohexane (gamma-HCH) and endosulfan with 1 degree x 1 degree lat/long resolution. The objectives of this project are: A) to create global gridded g-HCH and endosulfan emission inventories; B) to study the linkage between global g-HCH and endosulfan use trends and g-HCH and endosulfan concentration trends in the Arctic; and C) to assist in comparing concentrations and ratios of different HCH isomers in the Arctic biotic and abiotic environments.

Sources emission inventory b-HCH alpha-HCH Pollution sources Contaminant transport Modelling GIS a-HCH hexachlorocyclohexane Pesticides endosulfan beta-HCH Organochlorines Mapping lindane ß-HCH Long-range transport Discharges Spatial trends gamma-HCH gridded Emissions HCH Arctic Persistent organic pollutants (POPs) g-HCH Data management Atmosphere Temporal trends
95. AMAP Human Health Data Centre

The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.

Populations Heavy metals Indigenous people Arctic Persistent organic pollutants (POPs) Data management Temporal trends Human health Human intake
96. AMAP phase II- Faroe Islands, 2000, core program

The project is meant to cover specific parts of AMAP phase II in the Faroe Islands. The project includes species from the marine and freshwater environment as well as biota from the terrestrial subprogram. The species chosen for the project are to be analysed for the environmental toxins that were termed essential in the guidelines of the circumpolar programme, but minor adjustments may occur. The selection of species to be analysed have been made so as so to elucidate the burden of contaminants in the local and often also traditional food, and at the same time it has been important to ensure comparability between countries in the AMAP area. The biota chosen are pilot whale, black guillemot, hare, sheep and lamb, arctic char and sculpin. In addition to this core program where the above-mentioned are analysed for the limited set of pollutants, certain special tasks have been planned. Examples on such special tasks are the analysis of mercury in sediment core profiles and investigation of the dioxin and POP burden in cows milk.

PCBs Heavy metals Fish Terrestrial mammals Persistent organic pollutants (POPs) Seabirds Pesticides Temporal trends Marine mammals
97. Compiling and summarizing Persistent Organic Pollutant (POPs) data from the U.S. Arctic for the Arctic Monitoring & Assessment Programme (AMAP)

Objectives: 1. Locate and assemble scientific data from the U.S. Arctic on the concentrations and effects of POPs in all compartments (e.g., marine and terrestrial biota, abiotic substrates) of the Arctic. 2. Evaluate, analyze and summarize these scientific data from the U.S. Arctic into text suitable for inclusion in a new (second) AMAP publication on POPs. 3. Disseminate the summarized information via a U.S. AMAP Internet page that is directly linked to the current International AMAP Internet page. Summary (Abstract): The Arctic Monitoring and Assessment Programme (AMAP) was established in 1991 and given the responsibility of monitoring the concentrations and assessing the effects of selected anthropogenic pollutants in all compartments of the Arctic. The first AMAP assessment report, published in 1998, points out gaps in our current understanding of contaminant inputs, their transport processes and food web interactions. In addition, the AMAP report noted a serious lack of information about persistent organic pollutants (POPs) in the U.S. and Russian Arctic. Thus, the recommendations of the first AMAP report were to: monitor spatial distribution, contaminant levels and biological effects of POPs; improve the understanding of the adverse effects of POPs on human populations; and fill existing data gaps, specifically in the U.S. and Russia. In this work, we plan to identify sources of scientific information (e.g., published reports, datasets) on POPs in the U.S. Arctic and obtain these data for AMAP. Once data sources are identified, a small group of scientific experts will be assembled for a workshop to determine if any pertinent sources have been overlooked and to give advice on how best to evaluate, analyze, summarize and disseminate the information obtained. A working database will be designed so that the data and scientifically important findings or conclusions from each study can be organized and evaluated. Data will be analyzed statistically, as appropriate, to determine spatial and temporal trends. The data and scientific findings that have been collected and analyzed will then be summarized into text, for inclusion in the next AMAP publication on POPs. This major effort of synthesizing the existing data from the U.S. Arctic will ensure that the AMAP report adequately presents the accomplishments of U.S. scientists and research programs. The written publication and the summarized U.S. POPs data will also be presented as a U.S. AMAP Internet page linked to the International AMAP Internet page.

Persistent organic pollutants (POPs) SEARCH Data management assessment Phase II
98. Halocarbons in the atmosphere

The objectives are: 1. to monitor in near-real time the levels of a whole suite of halocarbons (both biogenic and anthropogenic) ranging through CFCs, HCFCs, and HFCs using an adsorption/desorption system coupled to a GC/MS system not using liquid cryogens. 2.The system will be installed (April 2000) at the Ny-Alesund, Zeppelin Research Station and will be operated and owned by NILU (Dr. N.SChmidbauer). 3. Comparisons will be made with the data obtained (since Oct. 1994) on similar compounds from the Mace Head (Ireland) station which uses similar instrumentation, and the Jungfraujoch Station (Jan 2000) operated by EMPA (Dr. Stefan Reimann). 4. Data will be compared to the Southern Hemisphere data collected at Cape Grimm, Tasmania by CSIRO (Dr. P. Fraser) 5. Data will be used to model the dispersion of the halocarbons in the high latitudes and possible consequences for radiative forcing.

Atmospheric processes Sources Long-range transport Contaminant transport Climate change Halocarbons Emissions Anthropogenic Arctic Persistent organic pollutants (POPs) Local pollution Atmosphere Biogenic