The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
Station realizes optical active remote sensing using multiwavelength elastic and Raman scattering lidar. It gives a view to the atmospheric stratification and aerosol concentration. By spatial and time localization of the higher aerosol concentration evidence there is possible determination of source of aerosol origin using HYSPLIT backward trajectory model. Station is also member of AERONET (Aerosol Robotic Network) within NASA and performing observation of solar radiation for determination of atmospheric optical properties.
Monitoring and modelling of a glaciated terrestrial ecosystem and land ocean fluxes to the adjacent fjord system. Main gaps: - Basic funding for long-term monitoring - Basic funding for data and data base handling A few short gaps due to sensor failures
The aim of the programme is to obtain a snapshot of the occurrence of potentially hazardous substances in the environment, both in regions most likely to be polluted as well as in some very pristine environments. The focus is on little known , anthropogenic substances and their derivates, which are either used in high volumes or are likely to be persistent and hazardous to humans and other organisms. If substances being screened are found in significant amounts this may result in further investigations or monitoring on national level. The results from the screening can be used when analysing possible environmental effects of the selected substances, and to assess whether they pose a risk to the environment or not. The data are used as input to EU chemical eavluation processes and to the UN Stockholm convention. The screening results are valuable when data on chemicals are needed within the REACH-system in Europe. Locations: Varying, according to properties of the substances. Samples from both hot-spot and remote sites are included. Geographical coverage (countries): Norway, including Bear Island and Spitsbergen and Norwegian seas. The Nordic countries are cooperating on screening information exchange and studies, see net site and brochure: http://nordicscreening.org/ http://nordicscreening.org/index.php?module=Pagesetter&func=viewpub&tid=10&pid=1
To monitor radioactivity in the air
Survey trends in deposition of long range transported heavy metals and other elements in Norway. For this purpose concentrations in mosses are measured. In year 2000 and 2005 extra samples were taken in areas with metallurgic industry to map the local level of deposition.
Both NOAA and NASA operate satellites with cover¬age of the Arctic region. The major observations and products are: 1. Daily, near real-time plots of surface, cloud, and radiative properties from AVHRR; 2. Near real-time MODIS and AVHRR polar winds; 3. Daily, near real-time plots of clear sky, low-level temperature inversions from MODIS; 4. Daily profile plots of Arctic temperature, humid-ity and winds; 5. Near-daily plots of surface winds over open water; and 6. Surface temperatures for land, sea and sea ice.
NPS monitors aerosols at Denali National Park and Preserve (DNPP) to calculate and track visibility trends (1988 to present). The aerosol program is part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Wet deposi¬tion has been monitored at DNPP (Site ID AK03) since 1980 as part of the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In order to estimate dry deposition at DNPP (Site DEN417), weekly concentrations of sulfur and nitrogen compounds have been measured since 1998 as part of the Clean Air Status and Trends Networks (CASTNet). UV-B radiation has been monitored at DNPP since 1997 as part of the EPA UV-B Monitoring Program. The NPS Western Air¬borne Contaminants Assessment Project (WACAP) is currently evaluating water, snow, sediments, willow bark, fish, and moose tissue in a number of western US and Alaska national parks, including DNPP, for the presence of metals (including mercury) and organic compounds.
NASA and NSF support the Greenland Climate Network (GC-Net), a series of automatic weather stations that monitor conditions on the ice sheet.
The overall goal of AON is to obtain data that will support scientific investigations of Arctic environmental system change. The observing objectives are to: 1. Maintain science-driven observations of environmental system changes that are already underway; 2. Deploy new, science-driven observing systems and be prepared for detection of future environmental system change; 3. Develop observing data sets that will contribute to (a) the understanding of Arctic environmental system change (via analysis, synthesis and modelling) and its connections to the global system, and (b) improved prediction of future Arctic environmental system change and its connections to the global system. Main gaps: Understanding Change and Responding to Change panels, has formed an AON Design and Implementation (ADI) Task Force. Composed of Arctic and non-Arctic scientists with experience and expertise in scientific observing and observing system operation and design, the goal of the task force is to provide advice to the scientific community and NSF on observing system/network design options that are available for identifying gaps that hinder scientific understanding of Arctic environmental system change. The task force will hold two workshops and address two main objectives: (1) evaluate the current SEARCH science questions and observing priorities, and recommend new priorities in the light of the environmental system changes that have occurred since 2005; and (2) evaluate observing system/network design methods, including pilot projects and small-scale tests. A publicly available report will be released in summer 2010. It is anticipated that the report will be of interest to the broader Arctic science community, the governments of the Arctic countries and other countries, NGOs and numerous stakeholders.
More information about NWS observing activities will be available in due course Alaska Region Headquarters, http://www.arh.noaa.gov/ Weather station list and real-time observations, http://www.arh.noaa.gov/obs.php Marine observations, http://www.ndbc.noaa.gov/maps/Alaska.shtml Hydrology – Alaska Pacific River Forecast Center, http://aprfc.arh.noaa.gov/
Observe changes in the ecosystem, fluxes of heat, salt, nutrients, CO2, and methane from the seafloor to the atmosphere above, as a function of changing climate in the Pacific Arctic region from the Bering Strait north to the high Arctic. Main gaps: So far unable to go far into the ice for investigation, although the geographical scope of the RUSALCA mission increased in 2009 because of the reduction of sea ice cover. (we were able to reach a northernmost site and to sample as far north as 77°30’N.
To provide real-time marine meteorological, oceanographic and geophysical observations in real-time to the World Meteorological Organization’s Global Telecommunications Service (GTS).
The Bering Sea is an extremely rich ecosystem providing almost half of the US catch of fish and shellfish. EcoFOCI has four moorings (M2, M4, M5 and M8), which are an important component in the observational system, monitoring changes in the ecosystem. Data are used by ecosystem managers, modellers (model validation), and scientists. They provide critical information on the spatial temperature structure, timing of phytoplankton blooms, cold pool and presence of marine mammals. Main gaps: Expanding instrumentation to measure ice thickness, nutrients, oxygen, PAR, zooplankton biovolume and atmospheric variables to all four of the mooring sites. Increase vertical resolution of nutrients. Expand measurements northward into the Chukchi and Beaufort Seas.
More information about the following long-term observing activities will be available in due course
More information about the following long-term observing activities will be available in due course
To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.
More information about the following aviation meteorology observing activities will be available in due course
1. Produce a geospatial surface meteorological database for the Beaufort and Chukchi Seas and the adjacent coastal areas by collecting available conventional and unconventional surface and atmospheric data and conducting field work; 2. Establish a well-tuned Beaufort/Chukchi seas mesoscale meteorology model through further modeling studies for the optimization and improvement of the model physics and configuration; 3. Conduct a long-term hindcast simulation with the optimized data-modeling system and produce a high resolution meteorological dataset for the Beaufort and Chukchi regions; and 4. Document the high-resolution climatological features of the Beaufort/Chukchi seas’ surface winds, including an analysis of the interannual variability and long-term
To determine status and trend in the condition of selected natural resources in national park units in Alaska. There are four networks, each encompassing activities in a set of national parks, preserves and other park lands: • Arctic Network (ARCN): Gates of the Arctic, Noatak, Kobuk Valley, Cape Krusenstern, Bering Land Bridge. • Central Alaska Network (CAKN): Yukon-Charley Rivers, Denali, Wrangell-St. Elias. • Southwest Alaska Network (SWAN): Kenai Fjords, Lake Clark, Katmai, Alagnak Wild River, Aniakchak. • Southeast Alaska Network (SEAN): Glacier Bay, Klondike Gold Rush, Sitka. Main gaps: Not all data are currently available but we are working toward that goal. Funding limitations do not allow monitoring at detailed levels.
The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a multi-platform national scientific user facility, with instruments at fixed and varying locations around the globe for obtaining continuous field measurements of climate data. Each ACRF site uses a leading edge array of cloud- and aerosol-observing instruments to record long-term continuous atmospheric and surface properties that affect cloud formation and radiation transport through the atmosphere. The ARCF also provides shorter-term (months rather than years) measurements with its two mobile facilities (AMFs) and its aerial measurements. Network type: - Atmosphere, with a focus on the impact of clouds and aerosol on the Earth’s radiation budget. - Location: Primary site: Barrow, Alaska, 71° 19' 23.73" N, 156° 36' 56.70" W Secondary site: Atqasuk, Alaska, 70° 28' 19.11" N, 157° 24' 28.99" W - Community-based: No.