The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
The aim is to study the diversity and function of marine bacteria closely associated with marine sponges. The special character of life strategy of the community (symbiosis – commensalism), with special emphasis to the identity and the recruitment of bacteria during live cycle of the sponges will be described.
Since nearly all microalgae are associated with bacteria and some harbor intracellular bacteria, it is most likely that these bacteria are involved in the development or termination of natural occurring plankton assemblages. The diversity and development of associated bacteria in microalgae cultures and during phytoplankton succession will be described by molecular analysis of the bacterial community structure and by phylogenetic analysis of involved microorganisms.
The photosynthetic productivity and the factors affecting it are measured in the nival zone of the Alps. Patterns of CO2 exchange for several lichen species are determined whilst recording environmental factors such as light and temperature and lichen water content. Whilst these records will show the lichen response over the year they can most easily be interpreted when the photosynthetic ability of individual lichens is well known. To achieve this the response of each species to light intensity, temperature, thallus water content and humidity will be determined under fully controlled conditions in the laboratory. The final aim is to achieve an initial carbon balance model for the lichen species. This will be aided considerably by the deploying of a continuously recording chlorophyll fluorescence system that will provide activity data for one lichen species on a better than hourly basis throughout the year.
Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.
The aim of this project is to investigate and understand those factors that play a role in the seasonal dynamics of different functional groups in the pelagic zone of coastal seas. We investigate the interactions between bacteria, phytoplankton, zooplankton and juvenile fish in order to assess the importance of biological interactions in the seasonal succession.
Description of parameters of the population dynamics of polar bivalve communities, first year: growth and reproductive cycle of the dominant Greenland cockles (Serripes groenlandicus)
The aim of this project is to investigate natural products from polar macroalgae. As arctic waters represent an extreme habitat, formation of secondary metabolites is limited - besides other factors - by light conditions. Therefore, the influence of light, particularly different photon fluence rates and UV radiation, on secondary metabolism and on regulation of associated genes will be studied.
As a result of the increasing atmospheric CO2 levels and other greenhose gases due to anthropogenic activities, global and water temperature is rising. The objectives of our project might be summarized as follows: I. To measure the activity of the enzymatic systems involved in carbon, nitrogen and phosphorus uptake (carbonic anhydrase, nitrate reductase and alkaline phosphatase) in selected macroalgae. To assess the optimal concentration of inorganic nitrogen and phosphorus for growth and photosynthesis. To study the total concentration of carbon and nitrogen metabolites in the macroalgae (proteins, total carbohydrates, and lipids) in order to define the possible existence of nutrient limitation. II. To simulate the conditions of climate change, represented as CO2 enrichment and increasing UV radiation, on the activity of carbon, nitrogen and phosphorus uptake mechanisms. III. To screen the activity of the enzymatic systems previously detailed in macroalgae from the Konjsfjord, in order to know their nutritional state.
To investigate arctic foxes physiological adaptations to life at high latitudes. Resting and running metabolic rates, body weight, food intake, body core temperature, heart rate, and blood parameters were examined during different seasons and during periods of food deprivation.
Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.
1. Analysis of existing data from the current shellfish monitoring programmes in order to design a suitable sampling strategy 2. Ideentification of toxic algal species in UK waters 3. Construction of a detailed time-series at several key sites in the UK for toxic phytoplankton and shellfish toxin occurence 4. Comparison of the genotype versus toxicity of suspected toxic species between sites
Large-scale changes in surface ocean chemical equilibira and elemental cycling have occurred in the fremework of "global change" and are expected to continue and intensify in the future. The progressive increase in atmospheric CO2 affects the marinebiospehere in varous ways: indeirectly, for instance, through rising mean global temperatures causing incereased surface ocean stratification and hence mixed layer insulation, and directly through changes in seawater carbonate chemistry. In lab experimetns we recently observed that CO2-related changes in seawater carbonate chemistry strongly affect calcification of marine coccolithophorids. A rise in atmospheric CO2 may slow down biogenic calcification in the surface ocean with likeley effects on the vertical transport of calcium carbonate to the deep sea. The lab findings will be tested with natural phytoplankton in semi-controlled conditions in a series of floating mesocosms.
The project primary goal is to relate among-year variation of tundra wader numbers and nesting success to breeding conditions on southeastern Taimyr.
The objective of the planned work with arctic higher plants is to study the range of adaptation of photosynthetic metabolism, of antioxidative and sun screen compounds in a cold and reduced UV-B climate in comparison of data already raised from high alpine plants, which live partially under stronger cold and under different light regimes, especially higher UV-B. Further, the ultrastructure of leaf cells will be studied to clear, whether adaptations found in some high alpine plants occur similarly in arctic plants, and to connect such cytological results with metabolic functions. An additional comparison will be made with snow algae from Svalbard compared to those harvested on high alpine snow fields. It is the advantage of the planned work, that a number of investigations ranging from ultrastructural studies over different aspects of photosynthesis to assays of UV-B sensitive compounds and antioxidants will be conducted mostly with measurements and sample collection in the field during the same experimental day at one place. Therefore we expect a good connection of the data raised, back to the plant system and expect a much broader description of vitality and adaptation under the current conditions.
The polar pteropod Clione limacina is characterised by high quantities of lipids with ether components (1-O-alkyldiacylglycerol=DAGE) in combination with odd-chain fatty acids. It is unknown why Clione and probably other pteropods have specialised in this manner. Furthermore the precursor of the biosynthesis of these compounds is still unknown. Therefore samples of Clione limacina and its only prey Limacina helicina will be collected by using plankton nets from small boats. The species will be kept in aquaria and feeding experiments with both species and food of different composition and nutritional value are planed.
Benthic macroalgae communities of the arctic ocean provide habitat, protection, nursery and nutrition to a large number of invertebrates. In contrast to temperate and tropical regions the basic ecological interactions between zoo- and phytobenthos of the Arctic are little understood. Therefore this project for the first time investigates biological and chemical interactions between invertebrates and macroalgae on Spitsbergen/Svalbard (Koldewey Station) with special emphasis on defense mechanisms against grazing pressure. Initial diving-investigations will map the invertebrate fauna which is associated with the macroalgae; the following feeding-experiments with herbivorous animals aim to selectively identify generalists, generalists with preference or specialists. Additional bioassays serve to reveal structural and/or chemical properties of those plants, which affect a specific impact on the grazing of herbivores. Our investigations on the chemical protection of the algae against grazing focus on the basic mechanisms and the chemical structure of potent secondary metabolites carried out in cooperation with natural product chemists.
Succession of communities and individual growth of benthic invertebrates are more or less unknown in polar waters, but nevertheless are the basic parameters of understanding the benthic sub-ecosystem, delivering data for modelling and prediction of the system´s development. Three localities, two in the Antarctic and one in the Arctic, the Kongsfjord in Spitsbergen, have been choosen as investigation localities. Hard and soft substrates, which will be sampled in regular intervalls during the duration of the project, will be deployed at different depths. The analysis includes species composition, species growth and, with respect to soft substrates, sediment parameters.
Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.
Contaminants were examined for trends over time, spatial variation based on disparate breeding areas, and relationships with measures of productivity. Most organochlorines and metals declined over time. Mercury was the only contaminant with possibly increasing concentrations in eggs. Egg and feather samples collected in 2000 will provide more information on mercury trends and effects. This study embodies 20 years of data on environmental contaminants in peregrine falcons nesting in Alaska.
The overall project outlined in this proposal represents a series of interrelated studies designed to answer questions regarding the effects of disturbance on distribution and abundance of waterfowl and marine birds. The primary studies (i.e., aerial surveys) are directly related to the objectives identified in the Minerals Management Service (MMS) Statement-of-work regarding Monitoring Beaufort Sea Waterfowl and Marine Birds near the Prudhoe Bay Oil Field, Alaska. Additionally, we plan to include the ‘optional’ studies on eiders using off-shore barrier island habitats. Finally, we propose to conduct ground based studies designed to enhance and expand the interpretation of the aerial surveys. The specific objectives of this study are: 1. Monitor Long-tailed Duck and other species within and among industrial and control areas in a manner that will allow comparison with earlier aerial surveys using Johnson and Gazeys’ (1992) study design. a) Perform replicate aerial surveys of five previously established transects based on existing protocol (OCS-MMS 92-0060). b) Expand the area from original surveys to include near-shore areas along Beaufort Sea coastline between the original “industrial” (Jones-Return Islands) and “control” (Stockton-Maguire-Flaxman Islands) areas. c) Define the range of variation for area waterfowl and marine bird populations. Correlate this variation with environmental factors and oil and gas exploration, development, and production activities. 2. Expand aerial monitoring approximately 50 km offshore. Surveys will target Spectacled, Common and King eiders. The goal is to sample areas potentially impacted by oil spills from the Liberty, Northstar, and/or Sandpiper Units. 3. Develop a monitoring protocol for birds breeding on barrier islands, particularly Common Eiders. These data will be compared to historic data summarized by Schamel (1977) and Moitoret (1998). 4. Examine relationships between life-history parameters (e.g., fidelity, annual survival, productivity) and ranges of variation in Long-tailed Ducks and Common Eider distribution and abundance to enhance interpretation of cross-seasonal effects of disturbance. That is, the combination of aerial and ground based work has the potential to both document changes in abundance/distribution and describe those changes in terms of movements of marked individuals. Parameters will be examined in relation to disturbance using the two-tiered approach developed by Johnson and Gazey (1992). 5. Recommend cost-effective and feasible options for future monitoring programs to evaluate numbers and species of birds potentially impacted by oil spills involving ice-free and ice periods in both inshore and offshore waters.