The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
-To measure the variability of the dense water and freshwater fluxes between the Arctic Ocean and the North Atlantic in the critical region off Southeast Greenland with a view to understanding and predicting their response to climate forcing -To construct an autonomous, bottom mounted profiling device capable of taking key water profile measurements.
-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).
The main objectives of ESAC II are the following: (1) Extend and improve the important existing Belgian contribution in atmospheric research started in the 50s, recognized internationally. (2) Investigate the chemistry of the atmosphere, to detect and understand its evolution, mainly with experimental means. Special attention will be paid to the evolution of the ozone layer and chemical species and processes with an impact on climate changes. (3) Support the Belgian policies and decisions regarding the Amendments to: - the Montreal Protocol on Substances that deplete the Ozone Layer; - the Kyoto Protocol on Greenhouse Gases (GHG) emissions.
-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).
-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores
EARLINET will establish a quantitative comprehensive statistical database of the horizontal, vertical, and temporal distribution of aerosols on a continental scale. The goal is to provide aerosol data with unbiased sampling, for important selected processes, and air-mass history, together with comprehensive analyses of these data. The objectives will be reached by implementing a network of 21 stations distributed over most of Europe, using advanced quantitative laser remote sensing to directly measure the vertical distribution of aerosols, supported by a suite of more conventional observations. Special care will be taken to assure data quality, including intercomparisons at instrument and evaluation levels. A major part of the measurements will be performed according to a fixed schedule to provide an unbiased statistically significant data set. Additional measurements will be performed to specifically address important processes that are localised either in space or time. Back-trajectories derived from operational weather prediction models will be used to characterise the history of the observed air parcels, accounting explicitly for the vertical distribution.
SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.
The aim of QUILT is to optimise the exploitation of the existing European UV-visible monitoring systems by which O3 and the related free radicals NO2, BrO and OClO can be measured. These monitoring systems include ground-based, balloon and satellite observations. QUILT is providing an assessment of the chemical ozone loss over the last decade and through 2000-2003. This is achieved through analysis improvements, consolidation of existing datasets and near real time integrations with chemical transport models.
The overall objective of COSE is to provide the Earth Observation (EO) user community with a validated, consistent and well-documented data set of mainly stratospheric constituent columns and/or profiles, by co-ordination of ground-based observations at existing stations in Europe. The data set builds on past and ongoing time series, and will be archived in a dedicated database for immediate and future exploitation, e.g., satellite validation activities, data assimilation and scientific studies. Active participation of some representative EO customers will assure that the delivered data sets come up to their requirements.
The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.
The effects of climate change in a dynamic competitive interaction between two or more species can be bought about either as direct responses of species to change or indirectly through effects on competing species. Intertidal barnacles are ideal model organisms to test these alternative causal mechanisms, being easily censussed and directly competing for space. Single- and multi- species models will be developed for barnacles in SW England to determine whether direct or indirect mechanisms better predict responses to change. The models will include functions for space-limitation, environmental influence and, in the latter models, functions for interspecific competition. Historical data from a network of sites collected over a 40-year period will be used to develop and test the models.
Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.
A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.
The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
Objective: to collect climatology information on the seasonal and year-to-tear variability of stratospheric CFCs, water vapour and atmospheric electrical parameters.
Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden
Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.