Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 61 - 80 of 291 Next
61. Study of bioactive compounds from arctic plants

Study of secondary metabolites and peptides produced by arctic plants. The aim of the project is the chemical and biochemical analysis of arctic plants such as Saxifraga spp., Artemisia borealis and Pedicularis dasyantha and others, for the search of compounds (secondary metabolites and peptides) to be employed as potential new drugs The basic working program in the arctic base will focus on the collection and preliminary work up (extraction, initial fractionation) of vegetal tissues from arctic plant species and their storage for the subsequent finer analyses

Pedicularis dasyantha Biology Saxifraga compounds analysis chemical and biochemical analysis of arctic plants Biodiversity Arctic data collection secondary metabolites and peptides Artemisia borealis Data management
62. Relative importance of different sources of particulate matter in the Kongsfjorden environment

The general objective of this research concerns the quantitative and qualitative study of particulate matter retained in natural (sea-ice and sediment) and artificial (sediment traps) traps in order to determine the main origin (autochtonous and allochtonous) and the relative importance of different fractions of particulate matter and to follow their fate in the environment. To quantify the autochtonous origin of particulate matter, primary production, nutrient uptake, biomass distribution, phytoplankton community structure and fluxes in the first levels of the trophic chain will be investigated. Studies will be conducted in the sea-ice environment and in the water column and compared to the particle fluxes measured both in the water, using sediment traps and in the sediment, by radiometric chronology, in order to estimate the different contribution of these habitats to carbon export to the bottom. The zooplankton will be identified and counted and primary production, nutrient uptake and phytoplankton dynamics will be related to hydrological structure and nutrient availability in the environment. The Kongsfjord results particularly suitable for the main objective of this research as it is influenced by important inputs of both atmospheric (eolic and meteroric) and glacial origin and is characterised by a complex hydrological situation which may promote autochtonous productive processes, thus determining important particulate fluxes.

athmospheric carbon dioxide Biological effects Biology Arctic haze Hydrography inorganic and organic nutrients particulate Sea ice Ice Oceanography Biodiversity Arctic Ice cores Data management Atmosphere Ocean currents phytoplankton sediment radiometric chronology zooplankton
63. Feeding biology of the cyclophoran Symbion pandora

Symbion pandora is a commensal on Norway lobster (Nephrops norvegicus) with a very complicated life cycle. The species was described very recently and appointed to a new phylum, Cycliophora. Obviously nothing is known about the biology of this animal. The present study investigated the feeding biology of Symbion pandora. This was investigated by offering them two different high quality food items: Algae and mussel. Additionally, incubations with radiolabelled dissolved amino acids were done to estimate the energy contribution from DOM. A specific goal was to quantify the amount of organic matter taken in during one meal and estimate how much this contributes to the total energy requirement of internal budding, production of larvae etc. during the life cycle of the cycliophoran. This was done by autoradiography and radiolabel incorporation.

Biology Feeding biology Symbion pandora Nephrops norvegicus Cycliophoran
64. Study of the mechaninsms of inorganic carbon acquisition in macroalgae of the Swedish westcoast

The aim of our work was to study the occurrence of inorganic carbon pumps in the cell membrane and their importance in the supply of C for photosynthesis in different macrophyte species. This was performed by checking and comparing responses of several green, brown and, especially, red marine macroalgae species under CO2 disequilibrium conditions in the presence of buffer and/or inhibitors of carbon uptake. In addition, the effect of the different treatments was also checked in the marine phanerogam Zostera marina.

Biological effects Biology photosynthesis CO2 macrophytes
65. Actographic analysis of benthic activity response to food income.

The activity pattern is recorded by new techniques of real-time video tracking of the benthic activity. Electronic intelligent sensors allow the time analysis of benthic numeric objects with intensive automated recording sessions. We record the natural behaviour of several animals over 24h cycles. We also look into possible antagonistic behaviour, i.e. how animals feed when they have tubes close to each other and when feeding may occur in the same patches. Comparison is made between active motile surface deposit feeders and tubicolous surface deposit feeders. Activities of Amphiura filiformis, A.chiajei (motile burried Ophiuroids) and Melinna cristata (tubicolous Polychaete) are extracted by image analysis and quantified. Amphiura activity is restricted to its deposit feeding mode and no suspension feeding is present in the experiments. We also examine how addition of phytoplankton to the sediment will affect the feeding activity and if Amphiura and Melinna can locate patches of food. Dynamics of the response to food addition is studied.

Amphiura Biology Feeding behaviour interaction Melinna Sediments
66. Energetics of copepods in non-steady state food conditions

Most studies of energetics in marine filter feeders have focused on animals living in steady state food conditions. However, copepods experience highly variable access to food because of food patchiness and behavioural avoidance of predators. For small copepods this is especially important since they lack the potential of energy storage, e.g. in the form of lipids. After a period of food deprivation Acartia tonsa show a compensatory increase in ingestion rate, but only temporarily and on the time scale of the gut filling time. The copepods are able to compensate for the lacking input of food. On the other hand, longer periods of starvation (6-14h) induce elevated ingestion rates that lasts longer than gut filling time. Under these circumstances other energetic factors influence the ingestion rate. Consequently, the energetics of the copepods are highly variable in a patchy food environment.

Biology ingestion rate energetics food patchiness copepods Food webs
67. Benthic Flux rates. Measurement of flow rates through and fluxes from individual tubes and burrows of benthic organisms

To asses the utility of a new range of microelectrode sensors in measuring the flux rates of oxygen and nutrients across the sedimentary diffusive boundary layer and into and through macrofaunal tubes and burrow structures.

Biological effects Biology oxygen polychaete bioturbation Sediments
68. Photosynthesis in marine macrophytes: Investigations into the feasibility of using PAM flurometry for measuring in situ photosynthetic rates and comparisons between PAM flurometry and gas exchange (O2 evolution and CO2 uptake)

To be completed.

Biology
69. Bioaccumulation, physiological and biochemical effects of pollutants in mussels

In order to evaluate the capacity of mussels to accumulate pollutants and to enhance growth and physiological effects, an investigation was carried out in the Faroe Islands and in the Skagerrak. In March 2000, about 1500 mussels of proper dimensions (length ranging between 5 and 6 cm) were collected in the Kaldbak Fjord (Faroe Islands) on a 10m water column. Selected mussels were divided in 4 groups (320 each) and deployed in 4 different stations (one at the Faroe Islands and three in the Skagerrak). Semipermeable membrane devices (SPMDs) were also deployed in the same stations for the preconcentration of lipophilic pollutants. One month later (end of April-beginning of May) mussels and SPMDs were recollected and sent to different laboratories for the determination of various parameters.

Mytilus Biological effects Biology scope for growth Organochlorines PCBs Heavy metals PCB bioindicator PAHs Long-range transport Contaminant transport Exposure PAH Persistent organic pollutants (POPs) Dioxins/furans SPMD bioconcentration
70. Macro-evolutionary Issuses in Aplacophoran Development

This project was initiated the previous year under a LSF funding. Its purpose was to provide a detailed descriptive, experimental and molecular study of aplacophoran embryology and larval development in the context of the current macro-evolutionary and developmental issuses. Research was to focus on the aplacophoran chaetoderm Chaetoderma nitidulum which is readily available at Kristineberg Marine Research Station. Aspects of aplacophoran development to be examined were the following: 1. Basic embryology and larval development. 2. Specification of the dorsal-ventral organizer and mesoderm. 3. Development of the larval and adult musculature systems and larval sensory organs. 4. Expression pattern of the engrailed gene and protein.

Biology
71. Study of Amphiura filiformis bioluminiscence

Amphiura filiformis is a common brittlestar founded in abundance in the vicinity of Kristineberg Marine Station. Despite numerous ecological studies on aspect of it's biology remains unclear, the animal is luminous and nearly nothing is known on the phenomenon. This project aimed firstly to describe morhological, physiological and ethological aspects of the bioluminescence of Amphiura filiformis and secondly to investigate the mechanism and role of regeneration on the recovery on bioluminescence.

Amphiura Biology bioluminescence
72. Interactions among infauna, microorganisms and polycyclic aromatic hydrocarbons in marine sediments

Dose-response experiments using 5 different sediment concentrations of fluoranthene (Flu) and pyrene (Py) respectively. Measuring radioactive marked Flu and Py in brittlestars and polychaetes and microbial degradation of Flu and Py in sediment. Also growth rate of brittlestars and polychaetes and determination of regenerationtime of brittlestar-arms.

Biological effects Biology PAHs microorganisms Petroleum hydrocarbons infauna Exposure Sediments
73. Effects of storage lipids on the repoductive potential of the copepod Calanus Finmarchicus in Gullmarsfjorden, Sweden

To be completed.

Biology Reproduction
74. Systems of intraspecies communication in Meganyctiphanes norvegica and construction of meter system for low light in deep water

To be completed.

Biology
75. Bioactivation of polyaromatic hydrocarbons (PAHs) in crab (Cancer pagurus), shrimps (Crangon spp and Palaemon spp) and a polycheate (Neries pelagica).

To be completed.

Biological effects Biology PAHs
76. An experimental study on stable carbon and nitrogen isotope fractionation by Meganyctiphanes norvegica - the influence of food source, assimilation efficiency and growth rate

The aim of our visit to Kristineberg was to study the stable carbon and nitrogen isotope fractionation of Meganyctiphanes norvegica in response to different food supply, and to evaluate the importance of physiological processes (assimilation and growth) in generating the new stable isotope pattern. This calibration will contribute to the evaluation of the stable isotope method as an approach to the study of food sources of animals in the field.

food Biology Meganyctiphanes norvegica krill Diet
77. Histology and immunocytology of the ectodermal nervous system in echinoderms

To be completed.

Biology
78. Microalgae as Cell Factories for Chemical and Biochemical Products

• To survey and document the state of the art in microalgal technology • To examine legislative and regulatory matters connected with the field • To bring together the various information on European algal collections into a single on-line portal • To develop the on-line database into a comprehensive tool for dissemination of knowledge pertaining to microalgae and microalgal research • To investigate current barriers to the use of microalgae and identify possible future uses of microalgae and microalgal technology • To help steer the direction of European research • To carry out technology transfer to the end users within the network, with measurable benefits for efficiency • To ensure the strategy involves dissemination to end-users outside the network partners • To ensure network cohesion and good communication between the partners • To develop an ongoing ‘virtual institute’ model and lay the groundwork for future RTD projects

Biological effects Food webs
79. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
80. On thin Ice

On thin Ice

Biology Biodiversity