The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
The main objectives of ESAC II are the following: (1) Extend and improve the important existing Belgian contribution in atmospheric research started in the 50s, recognized internationally. (2) Investigate the chemistry of the atmosphere, to detect and understand its evolution, mainly with experimental means. Special attention will be paid to the evolution of the ozone layer and chemical species and processes with an impact on climate changes. (3) Support the Belgian policies and decisions regarding the Amendments to: - the Montreal Protocol on Substances that deplete the Ozone Layer; - the Kyoto Protocol on Greenhouse Gases (GHG) emissions.
SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.
The aim of QUILT is to optimise the exploitation of the existing European UV-visible monitoring systems by which O3 and the related free radicals NO2, BrO and OClO can be measured. These monitoring systems include ground-based, balloon and satellite observations. QUILT is providing an assessment of the chemical ozone loss over the last decade and through 2000-2003. This is achieved through analysis improvements, consolidation of existing datasets and near real time integrations with chemical transport models.
The goals of this experiment are to map out the chemical changes in the free troposphere as the atmosphere transitions from winter to spring. It is hoped to begin to understand the chemical conditions that influence the lifetime of ozone and understand more about the productivity of this region of the atmosphere with respect to the in-situ production of ozone. How the free troposphere responds to changing levels of pollution could be critical to the development of future abatement strategies.
The overall objective of COSE is to provide the Earth Observation (EO) user community with a validated, consistent and well-documented data set of mainly stratospheric constituent columns and/or profiles, by co-ordination of ground-based observations at existing stations in Europe. The data set builds on past and ongoing time series, and will be archived in a dedicated database for immediate and future exploitation, e.g., satellite validation activities, data assimilation and scientific studies. Active participation of some representative EO customers will assure that the delivered data sets come up to their requirements.
The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.
Distribution • What is the current distribution of coral colonies in the North Sea? • Where are coral colonies located on the structures? • Do any colonies show evidence of exposure to drill cuttings? Monitoring & Environmental Recording • What hydrodynamic regime and levels of suspended particulate material are coral colonies exposed to? • Does the coral skeleton retain an archive of any past contamination? • Does skeletal growth vary over time and does this correlate with any past contamination? • How variable is the rate of coral growth and does this correlate with any environmental variables? Environmental Sensitivity • What effect does increased sediment load have on coral behaviour and physiology? • What effect does exposure to discharges (e.g. cuttings and produced water) have on coral behaviour and physiology? • Are such exposures realistic in the field?
In situ measurements in the stratosphere shall be carried out by means of different balloon soundings. The main goal is the investigation of aerosols in the tropopause-region and in the stratosphere during wintertime. Because generation of aerosols strongly depends on water vapour content, also water vapour will be measured.
Biomarkers for orgaic pollution components
1. To undertake a review of procedures used in the regulation and monitoring of marine cage fish farms in Norway, Scotland and elsewhere to be used as the basis for creating an appropriate set of protocols, monitoring systems and techniques for the control of such farms in Mediterranean conditions 2. To carry out a field research programme to provide appropriate data on the environmental impact of marine cage fish farms in a range of conditions in the eastern Mediterranean. 3. To develop a predictive model to simulate the environmental response at Mediterranean sea cage farms to differing cage stocking levels and feeding regimes. This will be designed as a management tool for both the industry and regulatory authorities.
1. Observations of the physics of vertical and open boundary exchange in Regions of Restricted Exchanges (REEs), leading to improved parameterisation of these processes in research and simplified models. 2. Study of the phytoplankton and pelagic micro-heterotrophs responsible for production and decomposition of organic material, and of sedimentation, benthic processes and benthic-pelagic coupling, in RREs, with the results expressed as basin-scale parameters. 3. Construction of closed budgets and coupled physical-biological research models for nutrient (especially nitrogen) and organic carbon cycling in RREs, allowing tests of hypotheses about biogeochemistry, water quality and the balance of organisms. 4. Construction of simplified 'screening' models for the definition, assessment and prediction of eutrophication, involving collaboration with 'end-users', and the use of these models to analyse the costs and benefits of amelioration scenarios.
1. To quantify the effectiveness of the biofilters in reducing the impacts of mariculture across Europe from both an economic and environmental perspective. 2. To determine the best design and placements of the biofilters, accounting for differences in geography, hydrology, nutrient input etc. between countries. 3. To examine the environmental and regulatory options governing the use of the biofilters at the end of their life-span and to provide detailed economic analyses of biofilter use compared to existing filtration methods.
The project aims to develop Molecular Imprinted Polymer (MIP)sensors into practical tools for the monitoring of a number of pollutants listed in the EU Water Framework Directive. (Further details in commercial confidence)
The 'NAR-2000' expedition was performed during August-September 2000. The overall programme of work includes: - monitoring of pollution in air, waters and bottom sediments of freshwater lakes, soils and terrestrial vegetation - soil/botanical studies - visual and remote sensing (aerial photos and video surveys) studies of damage to soil and vegetation cover. Samples of river water and bottom sediments from 25 freshwater bodies and samples from 16 terrestrial sites in the area of the Varandey and Toravey oil fields were taken for chemical analyses.
During 2000, observations under the framework of control of radioactive contamination were continued at 34 sites of the State System of Radiation Monitoring in the Russian Arctic. At all stations, daily monitoring of exposure dose strength of gamma emissions, and daily sampling of radioactive fallout from the atmosphere to determine total beta-activity are conducted. At sites in Arkhangelsk, Naryan-Mar, Salekhard, Murmansk, Dikson Island, Zhelaniya Cape, Kheis Island and Kandalaksha, sampling of atmospheric aerosols and precipitation was performed for specific radioisotopic analysis, including determination of tritium. Samples of surface water for determination of levels of 90-Sr and tritium were collected at radioactive contamination control stations in the mouth regions of the largest rivers of the Russian Arctic (Severnaya Dvina, Pechora, Mezen, Ob, Yenisey, Khatanga, Indigirka). 26 samples were collected for this purposes in 2000. Samples for determination of 90-Sr in seawater were collected at relevant sites in the Barents Sea and White Sea.
Phase I: Evaluation of the Current Status of the Problem with Respect to Environmental Impact and Development of Proposals for Priority Remedial Actions: The main goal of phase 1 of the multilateral PCB project is the evaluation of the current status of the PCB problem in Russia. The objectives of sub-activities under phase 1 of the project included: - Assessment of the overall production of PCB in the former USSR and Russian Federation, and the calculation of a mass-balance of the amount produced. - Estimation of the total volume of PCB still in use, in equipment and in wastes located within the territories of Russian Federation. - Preparation of an inventory of environmental releases from industrial uses and waste. - Development of proposals for priority remedial actions. Project results are presented in relevant publications (see below).
1. Sediment study for heavy metals and selected organic contaminants. 2. Analysis of benthic organisms for heavy metals and selected organic contaminants. 3. Study of suspended sediment distribution, composition and sources. 4. Determination of partitioning of heavy metals between dissolved and particulate phases.
Study changes in liver concentrations of Cd, Pb, Hg, Cu and Zn in Lagopus lagopus and Tetrao tetrix between the time periods 1990/91 and 2000/01
1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.
To assess potential levels of radionuclides input into the Kara sea from existing and potential sources of technogenic radioactivity, located on the land in the Ob- and Yenisey rivers watersheds. Specific Objectives * To reveal and estimate a) most hazardous technogenic sources of radioactive contamination in the Ob- and Yenisey watersheds and b) the most possible and dangerous natural and technogenic (antrophogenic) situations (in the regions of these sources) that may result in release of radionuclides into the environment and may lead to significant changes in the radioactive contamination of the Kara sea * To estimate parameters of radionuclides (potential amount, composition, types etc.) under release to the environment from chosen sources as a result of accidents as well as during migration from the sources to the Kara sea through river systems * To set up a dedicated Database and a Geographic Information System (GIS) for modelling transport of radionuclides from the land-based sources to the Kara sea * To develop and create a dedicated model tool for simulation of radionuclides transport from land-based sources through Ob- and Yenisey river systems to the Kara sea