Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 96 Next
41. Atmospheric Monitoring Network for Antropogenic Pollution in Polar Regions (ATMOPOL)

The project aims at establishing a long-term Arctic-Antarctic network of monitoring stations for atmospheric monitoring of anthropogenic pollution. Based upon the long and excellent experiences with different scientific groups performing air monitoring within the Arctic Monitoring and Assessment Programme (AMAP), an expanded network will be established including all AMAP stations and all major Antarctic “year-around” research stations. As an integrated project within the “International Polar Year 2007-08” initiative, the ATMOPOL co-operation intend to • Establish a long-term coordinated international Arctic-Antarctic contaminant programme. • Develop and implement a joint sampling and monitoring strategy as an official guideline for all participating stations. • Support bi-polar international atmospheric research with high-quality data on atmospheric long-range transport of contaminants (sources, pathways and fate). • Support future risk assessment of contaminants for Polar Regions based on effects of relevant contamination levels and polar organisms Based upon the well-established experiences of circum-Arctic atmospheric contaminant monitoring in the Arctic under the AMAP umbrella, a bi-polar atmospheric contaminant network will be established and maintained. In conjunction with the polar network of atmospheric monitoring stations for air pollution, surface-based and satellite instrumentation will be utilised to provide the characterization of the Arctic atmospheric-water-ice cycle. Together with numerical weather prediction and chemical transport model calculations, simultaneous measurements of pollutants at various locations in the Arctic and Antarctic will enhance our understanding of chemical transport and distribution as well as their long-term atmospheric trends. In addition to investigating the importance of atmospheric transport of pollutants an understanding of the transference and impact of these pollutants on both terrestrial and marine environments will be sought. A secretariat and a “scientific project board” will be established. During this initial phase of the project (2006), a guideline on priority target compounds, sampling strategies, equipment and instrumentation, analytical requirements, as well as quality assurance protocols (including laboratory intercalibration exercises) will be developed and implemented. The ATMOPOL initiative aims to address highly relevant environmental change processes and, thus, will strive to answering the following scientific questions: • How does climate change influence the atmospheric long-range transport of pollutants? • Are environmental scientists able to fill the gaps in international pollution inventories and identification of possible sources for atmospheric pollution in Polar Regions? • What are the differences in transport pathways and distribution patterns of various atmospheric pollutants between Arctic and Antarctic environments? Why are there such differences? What is the final fate of atmospherically transported pollutants and how does this impact on the environment and indigenous people?In order to understand the underlying atmospheric chemistry of pollution, e.g. atmospheric mercury deposition events, routine surface measurements of UV radiation as well as campaign related measurements of UV radiation profiles will also be included.The project will establish a cooperative network on atmospheric contaminant monitoring in Polar Regions far beyond the IPY 2007/08 period and is, thus, planned as an “open-end” programme. All produced data will be available for all participating institutions for scientific purposes as basis for joint publications and reports from the ATMOPOL database to be developed.

Pathways Atmospheric processes Heavy metals Long-range transport Contaminant transport Persistent organic pollutants (POPs) Atmosphere
42. IOANA

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere
43. Organic compounds: precursors and their oxidation products in the Artic environment

The min goals are: -to study the organic composition, trace gas and aerosols in environmental air; -to try to identify transport phenomena (i.e. from Europe), local degradation and removal processes; -to evaluate the effect of the organic compounds on the polar environment, toxic compounds or formed photochemical products in order to prevent and protect the climatology and their environment. Organic compounds determination is focused on two sampling field campaigns in the Arctic region, in the summer and in the winter corresponding at day conditions and night time.

PCBs PAHs Long-range transport Arctic Atmosphere
44. Study of the ice phase in Arctic mixed-phase clouds and its influence on the cloud-radiation interaction (EPOPEE) within the international atmospheric research project ASTAR (Arctic Study of Tropospheric Aerosol and Radiation)

The project EPOPEE is embedded in the international project ASTAR to study direct and indirect climate effects of aerosols and clouds in the Arctic. The particular goals of the project EPOPEE are to experimentally characterize the ice phase in Arctic clouds (including the ice phase) in situ, to study the aerosol-cloud as well as cloud-radiation interactions, and to develop adequate methods to validate remote sensing cloud parameters. In 2004 the project EPOPEE is mainly organized around in situ observations of detailed microphysical and optical cloud properties onboard the Polar-2 aircraft during the transition from polluted Arctic haze (observed especially in late winter, early spring months) to clean summer aerosol conditions. The transition from Arctic haze to clean summer conditions is quite sharp (a large amount of aerosols coming from Eurasian industrial areas accumulate over the Arctic and cover the Arctic by a layer of a smog-like haze of the size of the continent of Africa) due to a radical change in atmospheric transport patterns and is, thus, easy to identify. During Arctic summer, the high latitudes are then more or less “protected” from long-range transport of air masses from lower latitudes. The principal scientific objective of the project EPOPEE in 2004 will focus on studying the aerosol-cloud interactions with particular attention given to the ice phase nucleation in Arctic mixed-phase clouds. The interpretation of the instrumental observations will broadly benefit from a very close cooperation with the LaMP modelling group for theoretically coupling small-scale processes (cloud particle nucleation) with meso-scale dynamics. Furthermore, the project will focus on cloud-radiation interaction and the development of adequate methods to validate cloud parameters retrieved from remote sensing techniques. Therein, we will experimentally answer the question of how the different ice crystal shapes govern the scattering phase function of respective crystals. Moreover, the in situ cloud measurements will allow to develop an adequate strategy for the interpretation of remote sensing data from a depolarisation Lidar onboard the same aircraft (Polar-2).

Atmospheric processes Arctic haze Long-range transport Climate Contaminant transport Climate change Modelling Arctic Atmosphere Ecosystems
45. PARTICLE COUNTER - METEO STATION CORBEL STATION

This technological program aims to collect permanent informations on local meteorology and aerosols particles at Corbel Station, Svalbard, 6km east of Ny alesund. 78 54 N, 12 07 E Programme 2004 – 2005 April 2004 : Prticmle counter installation and collect datas from meteo Station. Soar cels will be also instlled at the station to power these systems.

Atmospheric processes Climate variability Long-range transport Climate Pollution sources Contaminant transport Climate change Arctic Local pollution Atmosphere
46. PARTICLE COUNTER - METEO STATION CORBEL STATION

This technological program aims to collect permanent informations on local meteorology and aerosols particles at Corbel Station, Svalbard, 6km east of Ny alesund. 78 54 N, 12 07 E Programme 2004 – 2005 April 2004 : Prticmle counter installation and collect datas from meteo Station. Soar cels will be also instlled at the station to power these systems.

Atmospheric processes Climate variability Long-range transport Climate Pollution sources Contaminant transport Climate change Arctic Local pollution Atmosphere
47. NOx and SO2 samplings - Corbel station

This technological program aims to get a better view of the Corbel site quality (78 54 N, 12 07 E, Svalbard close to Ny Alesunsd) for atmospheric chemistry. Nox and SO2 samplers are deployed on 16 places on a 4 km2 area around the Station (79°N, Svalbard), protected from snowscooters activity. The influence of Ny Alesund village is also studied. Programme 2004 April 2004 : poles installation and samplers deployment on the 16 stations; analysis will be made by CNR.

Atmospheric processes Long-range transport Climate Pollution sources Contaminant transport Climate change Emissions Arctic Local pollution Atmosphere
48. Tritium as a 'natural' tracer of air masses

It is well known that tritium, the hydrogen isotope 3H, is part of nuclear weapons and was spread all over the world as a consequence of nuclear bomb explosions. Rarely it is regarded as being “natural”, but actually it is. Long time before humans appeared tritium already existed on earth for a long time. This “natural” tritium is the product of cosmic radiation interactions with the atmosphere (mainly N-14). Nowadays this kind of tritium production contributes only to a small extent to the atmospheric tritium. Tritium is radioactive and decays with a half-life of 4.500 days under the emission of a very low energetic beta-particle. In the atmosphere tritium can be found within water vapour (HTO), hydrogen (HT) or methane (CH3T). Yet, the main portion of tritium released during the 1960’s has already been eliminated from the atmosphere by radioactive decay and precipitation. A large amount is captured in the oceans. Indeed, today anthropogenic sources releasing tritium to the environment can still be found. At the end of the 1980‘s contacts with research institutes in former Eastern Bloc countries lead to the idea of establishing a tritium sampling network. The primary goal was the documentation of atmospheric tritium. Statements about potential releases and their sources and the radiation hazards associated should be obtained. Furthermore it might help with the verification of meteorological models. To acquire comparable results a standardised sampling device was developed. This system simultaneously collects samples of air humidity and hydrogen. It was planned to enlist the gathered data in a database and to use them for the following subjects: • observation of local and global tritium transport in the atmosphere • detecting tritium releases and locating their sources • radiation risk evaluation • examining the transmutation of elemental hydrogen into water under natural conditions With the breakdown of the Eastern Bloc the idea of this common network faded away. At the moment only at two stations in Austria air humidity and air hydrogen are collected as planned: since 1991 at Research Center Arsenal in Vienna and since 1999 at Hoher Sonnblick a high mountain station (3160 m). Currently we are working together with the IAEA on a project with the aim to find a model, which helps evaluating weather conditions and in particular the climatic processes. As for these investigations the stable isotopes H-2 and O-18 are used and the currently used device introduces fractionation a new method is developed right now. Since the specific tritium activity concentration is not affected by air pressure or humidity the values for the two locations can be compared directly. In general the measured values are similar but sometimes differ noticeably. For example a peak value for the tritium activity concentration observed during March 2000 at Sonnblick was not noticed in Vienna. In this context the attempt should be made to analyse the air flows with the help of trajectories. The tritium activity concentration of air humidity is primarily determined by the amount of humidity itself. Therefore the concentration is directly linked to the seasons. Only significant changes in the specific tritium activity concentration can be detected by the use of the tritium activity concentration. Seasonal variations within the tritium activity concentration of hydrogen could not be observed. The values vary around 10 mBq/m3.

Atmospheric processes Radioactivity Long-range transport Climate Contaminant transport Radionuclides Modelling Atmosphere
49. Bioaccumulation, physiological and biochemical effects of pollutants in mussels

In order to evaluate the capacity of mussels to accumulate pollutants and to enhance growth and physiological effects, an investigation was carried out in the Faroe Islands and in the Skagerrak. In March 2000, about 1500 mussels of proper dimensions (length ranging between 5 and 6 cm) were collected in the Kaldbak Fjord (Faroe Islands) on a 10m water column. Selected mussels were divided in 4 groups (320 each) and deployed in 4 different stations (one at the Faroe Islands and three in the Skagerrak). Semipermeable membrane devices (SPMDs) were also deployed in the same stations for the preconcentration of lipophilic pollutants. One month later (end of April-beginning of May) mussels and SPMDs were recollected and sent to different laboratories for the determination of various parameters.

Mytilus Biological effects Biology scope for growth Organochlorines PCBs Heavy metals PCB bioindicator PAHs Long-range transport Contaminant transport Exposure PAH Persistent organic pollutants (POPs) Dioxins/furans SPMD bioconcentration
50. Mobilisation and Consentration of Natural and Anthropogenic nuclides in a high Arctic Fjord

This year the Norwegian Radiation Protection Authority hope to conduct marine biota, water and terrestrial sampling in the area of Kongsfjord. Such samples as are obtained will be analysed for a suite of natural and anthropogenic radionuclides, the resulting data contributing towards NRPA’s marine and terrestrial monitoring program and research efforts in the area of Arctic radioecology. These research efforts are currently focused on two areas: Arctcic marine radioecology and Arctic terrestrial radioecology. The marine component of this years field work will provide samples allowing for the study of variability in the uptake of radioactive marine contamination in a High Arctic fjord. Samples will also be taken, where possible, of such species as constitute prey for seabirds in the area. The terrestrial component shall be concerned with factors pertaining to the clarification of the situation regarding elevated levels of radionuclides at certain sites within the Kongsfjord area, most pertinent being those associated with detrital accretions close to bird colonies.

Radioactivity Long-range transport
51. Ther use of SPMD's and DGT's for the detection of trace-level pollutanys in water

To be completed.

Organochlorines PCBs Heavy metals PAHs Long-range transport Contaminant transport Petroleum hydrocarbons Exposure Dioxins/furans
52. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
53. Enhanced deposition of atmospheric mercury during Arctic sunrice _ International campain/intercompariosn

The general objective of the project is to increase the understanding of the Mercury Depletion Events occuring at Arctic sunrise and to quantify the input of mercury to polar ecosystems during this events.

Atmospheric processes Long-range transport
54. Determination of heavy metals in aerosols and deposition

Total deposition sampling is performed at Ny-Ålesund to study atmospheric fluxes of heavy metals to the Arctic. In addition wet only deposition sampling is carried out with an automatic precipitation sampler. The samples are analysed at the home laboratory for tracer elements for seaspray components, earthcrust weathered material and anthropogenic elements by atomic absorption spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). One aim of our study is to distinguish element distribution between the dissolved and particulate phase. In addition to the element analyses the concentration of anions is determined by ionchromatography. In 1996 an automatically operating aerosol sampler was installed, which is combined with the automatic precipitation sampler to study element washout from aerosol particles via rain and snow.

Aerosols Heavy metals Long-range transport Contaminant transport Deposition Samples Emissions Arctic Atmosphere
55. Effects of atmospheric aerosol on climate, measured by sun and star photometer

In recent years, much attention has been directed towards understandig the effects of aerosols on a variety of processes in the earth atmosphere. Aerosols play an integral role in limiting visibility, they serve as nuclei for the formation of fog and cloud droplets, they affect the earth radiative budget, and thus climate, both directly and indirectly, and they inhibit the propagation of electromagnetic radiation. The Arctic aerosols, especially Arctic Haze and tropospheric ice crystals possible have important climatic and ecological and global change implications. Since 1991 Sun photometer observations of the polar atmopheric aerosol have been performed at the Koldewey Station in Ny-Aalesund, Spitzbergen. In order to complete the coverage and quality of measurements during the polar night a high sensitive Star photometer is installed since January 1996. Both measurements, the daylight Sun photometer measurements and night Star photometer measurements will be continued.

Aerosols Atmospheric processes Arctic haze Climate variability Long-range transport Climate Climate change Arctic Tropospheric ice crystals Atmosphere
56. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
57. Atmospheric transport modelling of HM/POPs over Europe

The aim of this project is to assess the deposition of HM/POP over Europe and to evaluate models. Within the framework of UN-ECE, EMEP Meteorological Synthesising Centre-East (MSC-E Moscow) organised in co-operation with RIVM, a model intercomparison for operational transport models on HM in 1995. In this intercomparison the RIVM will participate with the TREND-model. Results of the intercomparison will also be reported to the OSPAR commission. A model comparison for POPs will follow later. The RIVM/EUROS model is extended with soil and surface water modules in order to improve the description of the exchange process of POPs (deposition and re-emission). With the model, long-term averages of the deposition and accumulatation of POPs are described and scenario-studies can be carried out. In the first instance, Lindane and B(a)P will be taken as examples of POPs dominantly present respectively in the gas phase and attached to particles. When emissions are available the calculations are extended to other POPs.

Pathways Atmospheric processes Heavy metals PAHs Long-range transport Contaminant transport Modelling Emissions Persistent organic pollutants (POPs) Pesticides Atmosphere
58. Monitoring pollution of air and precipitation in Arctic Russia

Stationary systematic observations of pollution in atmospheric air and precipitation. During 2000, observations of contaminant levels in atmospheric air in the cities of Murmansk, Nickel, Monchegorsk, Salekhard and Norilsk were conducted. Monitoring of sulphur and nitrogen compounds in air and precipitation was continued at the above locations and also at Yaniskosky (Kola peninsula) and Pinega (Arkhangelsk region) under the EMEP programme framework. Observations of CO2 were continued at the Teriberk station. Observations of the chemical content of atmospheric precipitation were carried out at 5 stations in the Arctic network of stationary observations: in the Krasnoshelye settlement area (Kola peninsula), Naryan-Mar (Pechora river area), Dikson Island, Turuhansk (Yenisey river area), and Kusyur settlement area (Lena river). Under a joint Russian-Canadian-AMAP project, monitoring of POPs and (from 2001) mercury in air at the Amderma site is conducted.

Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Persistent organic pollutants (POPs) Local pollution Pesticides Atmosphere EMEP air monitoring urban air quality
59. 'Karex-Pechora' expedition

The 'Karex - Pechora' expedition marine investigations by the research vessel 'Ivan Petrov' in the Kara and Pechora seas in August 2000, and by the research vessel 'Hydrolog' during September-October 2000. During August 2000 samples of marine water, suspended and bottom sediments at 30 oceanographic stations were analyses for contaminants. At 8 stations, hydrobiological investigations included sampling of benthic organisms, plankton and fish, for studies of bioaccumulation and transformation of contaminants.

Shelf seas Organochlorines PCBs Hydrography Heavy metals Fish PAHs Long-range transport Spatial trends Contaminant transport Petroleum hydrocarbons marine benthos Persistent organic pollutants (POPs) Sediments Oil and Gas
60. 'Lena-2000' expedition

The 'Lena-2000' expedition was performed in the area of the mouth of the Lena river and the shelf of the eastern part of the Laptev Sea during August 2000. Samples of river and marine water, suspended and bottom sediments were taken at 30 hydrological stations to study the mechanisms of contaminant transport by river water.

Shelf seas Pathways Organochlorines PCBs Hydrography Catchment studies Heavy metals PAHs Long-range transport Contaminant transport Petroleum hydrocarbons riverine transport Persistent organic pollutants (POPs) Sediments fluxes