The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
In addition to the persistent organic pollutants (POPs) analysed in former monitoring projects, other compounds of concern have been identified by the international community (e.g. OSPAR, AMAP), and analytical methods have been developed. These compounds include brominated flame retardants (BFRs), phthalates, polychlorinated naphthalenes (PCNs), perfluorooctane sulfonate (PFOS) and synthetic musk compounds. The aim of this project is to screen the marine environment of East and West Greenland and the Faroe Islands for these compounds. The analyses will be based on existing samples of pilot whale and fulmars from the Faroe Islands as well as marine sediments, shorthorn sculpins, ringed seals, minke whales from West Greenland and shorthorn sculpins, ringed seals and polar bears from East Greenland. As several trophic levels of the marine Arctic food chain are taken into account, the project will also result in information on the bioaccumulation of these compounds.
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.
The project studies the development through time of contaminants (heavy metals and organic pollutants) in animals in Greenland.
Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.
-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).
• This proposal is to develop a reliable method for forecasting the occurrence of marine mammals based on time of year, location and oceanographic conditions. • The work will exploit components of existing NERC-funded research within the core science programmes of SMRU and SAMS. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the Sea of the Hebrides and the Minch. • Historical data on marine mammal sightings will be supported by an observational programme, including the use of acoustics and satellite and radio tags. • Simultaneous oceanographic data will be collected during the above programme, supplementing the extensive SAMS archive of time-series from this area. • A proposed operational monitoring network in the southern Minch will be adapted to add acoustic observations to the planned suite of physical and chemical sensors. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The validity of this relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.
• There is a clear need to predict the occurrence of marine mammals in order to minimise the possible harmful impact of military sonar activities, some of which have recently received extensive public media exposure. • No military or civilian method currently exists to predict the possibility of encountering marine mammals. • The proposed work will exploit components of existing NERC-funded research within the core science programmes of SAMS and SMRU to develop a predictive tool that will link marine mammal occurrence to classical oceanographic observables. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the open seas to the north and west of the Hebrides. • Existing NERC-funded SAMS cruises in this area will collect oceanographic data, supplementing remotely sensed imagery and the extensive SAMS archive of time-series from this area. • A key element in achieving the proposal objective (and in furthering NERC science objectives) will be the recruitment of SMRU observers and equipment to SAMS cruise complements so that marine mammal sightings may be linked directly to the oceanographic research programme. • Additional SMRU deployments on board vessels of opportunity will increase the density of the observational programme. • The suitability of SOSUS acoustic data as an indicator of marine mammal presence will be investigated. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The value of the relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.
-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).
Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.
(a) To assemble and further develop an integrative methodology for in situ evaluation of the effects of turbidity and hypoxia on fish physiological and/or behavioural performance. (b) To determine experimentally the threshold values beyond which oxygen and turbidity levels are liable to alter fish physiological and/or behavioural performance. (c) To integrate the results obtained in a conceptual and predictive model. Main expected achievements: [1] establishment of a link between laboratory studies, studies in mesocosms and field studies, using the most advanced techniques for monitoring behaviour in various environmental conditions. [2] an understanding of the impact of water turbidity and oxygenation on three major components of the behavioural repertoire of fish: habitat selection, predator-prey interactions and schooling-aggregation. [3] Predictive ability for the effect of the environmental variables studied on ecologically relevant behaviour.
The aim of this project is to investigate and understand those factors that play a role in the seasonal dynamics of different functional groups in the pelagic zone of coastal seas. We investigate the interactions between bacteria, phytoplankton, zooplankton and juvenile fish in order to assess the importance of biological interactions in the seasonal succession.
1. The improvement of the scientific basis for the management of fisheries taking elasmobranch species by: a)Species Identification /biological sampling b)Stock discrimination / separation c)Data compliation and exchange d)Data preparation, stock assessment & species vulnerability
1. To quantify the effectiveness of the biofilters in reducing the impacts of mariculture across Europe from both an economic and environmental perspective. 2. To determine the best design and placements of the biofilters, accounting for differences in geography, hydrology, nutrient input etc. between countries. 3. To examine the environmental and regulatory options governing the use of the biofilters at the end of their life-span and to provide detailed economic analyses of biofilter use compared to existing filtration methods.
1. To establish an environmental monitoring regieme during and following the period of reef complex construction using, where possible, the same static monitoring sites and transects established during the pre-deployment research, in addition to new stations 2. To develop and test models that will predict ecosystem changes caused by artifical habitat manipulation. The main model will examine whole ecosystem changes. Other models will examine hydrological profile alterations, habitat fractal dimensions and socio-economic cost benefit analysis.
1. To descirbe and compare the phylogenetic diversity and distribution of the total bacterial flora associated with G catenatum cysts and vegetative cells. 2. To culture and identify bacteria from G catenatum, and identify/characterise any bacteria capable of autonomous PST production in G. catenatum 3. To examine the effect of cyst surface sterilisation and re-introduction of bacteria on PST production in G catenatum 4. Survey bacteria for quorum sensing capability (cell signaling) and detect in situ quorum sesing in xenic G. catenatum cultures, relating to toxicity development. 5. Develop molecular markers of cross species quorum sensing, facilitating analysis of quorum sensing in uncultivated bacteria.
1. Analysis of existing data from the current shellfish monitoring programmes in order to design a suitable sampling strategy 2. Ideentification of toxic algal species in UK waters 3. Construction of a detailed time-series at several key sites in the UK for toxic phytoplankton and shellfish toxin occurence 4. Comparison of the genotype versus toxicity of suspected toxic species between sites
Objective 1: To map the structural and genetic variability, the framework-constructing potential, and the longevity of Deep Water Coral (DWC) ecosystems Objective 2: To assess hydrographic and other local physical forcing factors affecting Benthic Boundary Layer (BBL) sediment particle dynamics and POC supply in the vicinity of DWC ecosystems Objective 3: To describe the DWC ecosystem, its dynamics and functioning; investigate coral biology and behaviour and assess coral sensitivity to natural and anthropogenic stressors Objective 4: To assign a sensitivity code, identify the major conservation issues (and increase public awareness), and make recommendations for the sustainable use of the DWC ecosystem
1. To determine the effects of each of several sealice treatment chemicals on macrofaunal assemblages 2. To determine the effects of each of several sealice treatment chemicals on zooplankton assemblages 3. To determine the effects of each of several sealice treatment chemicals on meiofaunal assemblages 4. To determine the effects of each of several sealice treatment chemicals on benthic diatom assemblages 5. To determine the effects of each of several sealice treatment chemicals on phytoplankton assemblages 6. To determine the effects of each of several sealice treatment chemicals on macroalgal and littoral assemblages 7. To measure the concentrations of each of several sea lice treatment chemicals in the environment post-treatment 8. To determine the significant correlations between ecosystem responses, time and therapeutant concentration to determine the proportion of the observed environmental variance attributal to the treatments against a background of responses due to other parameters such as waste organic materials and nutrients 9. To model the dispersion and or depostion of farm wastes including of each of several sea lice treatment chemicals in the marine environment post treatment and to incorporate terms relating to the toxicity of these chemicals to certain parts of the ecosystem (e.g. the macrofauna)
1. To develop a system of photoactive biocides for treating sea lice and biofouling (Further details in confidence)
1. To describe the ontogeny of foraging behaviour of halibut larvae, and to determine any detrimental effects of current commercial rearing practices in terms of structural damage, developmental abnormalities and behavioural competence 2. To investigate the resistance of larvae to handling in relation to developmental stage, in order to determine the most appropriate stage for handling and to devise non-damaging handling methods 3. To investigate whether larvae exhibit temperature, or salinity preferences at critical developmental stages, by means of behavioural observations in temperature/salinity gradients and by subjecting larvae to different acclimation regiemes in rearing tanks 4. To develop husbandry protocols that reduce the incidence of surface aggregation and that enable larvae to be retained in UK upwelling tanks for the optimal duration, in terms of handling resistance, behavioural competence and feed initiation success 5. To determine the optimum conditions for transferring larvae to first feeding tanks, by investigating responses to physical, chemical and biological parameters, including mechanisms by which microalgae 'green water' promote or enhance feed ingestion 6. To obtain a reproducible benefical microbial flora during the early stages of larval rearing, with the aim of establishing an industry -relevant probiotic approach at the feed initiation stage