The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
The ASAP in its present form began in the mid1980s. The programme objective is to record profile data from the upper air strata in ocean areas using automated sounding systems carried on board merchant ships plying regular ocean routes. Several national meteorological services operate ASAP units and the collected data are made available in real time via GTS. ASAP data are archived alongside other radio sounding data by many national meteorological services. ASAP is an important contribution to both the WWW and GCOS. Today most of the soundings are from the North Atlantic and north-west Pacific, but the programme is expanding to other ocean basins through a new, co-operative World-wide Recurring ASAP Project (WRAP). Denmark operates two ASAP units mounted on ships plying fixed routes from Denmark to Greenland. The European meteorological cooperation EUMETNET started a special E-ASAP programme in December 2000. The programme aims at joint operation of the ASAP programmes under the European meteorological institutes.
DMI runs radio sounding stations at the following six locations: Tórshavn (the Faroe Islands), Danmarkshavn, Illoqqortoormiit, Tasiilaq, Narsarsuaq and Aasiaat (Greenland). Two soundings are made every day at these stations. A monthly summary (CLIMAT TEMP) from all stations is prepared and transmitted routinely on the GTS.
For national purposes, more data concerning precipitation is needed than can be provided from the overall surface climatological and meteorological network described above. In Denmark the precipitation observation network consists of approximately 350 stations. Roughly 100 of these provide data on precipitation intensity on an ongoing basis. They are jointly operated by DMI and The Water Pollution Committee of the Society of Danish Engineers (Spildevandskomitéen - SVK). The remaining 250 stations collect daily values of precipitation, and data from these are electronically transmitted to DMI on a daily basis. On the Faroe Islands a network of 7 precipitation station observe daily precipitation. Information on precipitation can also be obtained from weather radar data. In Denmark, DMI runs a network of four weather radars which provides 100% coverage of Danish land areas and coastal marine areas. The network s geographical coverage is unsurpassed, and hence provides detailed information about precipitation on national and local scales. By calibrating radar data against point measurements of precipitation the latest scientific results show a high absolute accuracy.
Denmark has a network for the collection of sea temperatures at 13 coastal stations around Denmark. The stations are operated by DMI, the Royal Danish Administration for Navigation and Hydrography, the Danish Coastal Authority, and local authorities respectively. Data are available from each of the responsible bodies. Furthermore, sea surface temperatures are monitored using satellites, and DMI prepares daily maps for the North Sea and Baltic Sea areas.
Over the years, DMI has established a number of very long climatological series with differing periods of information representing Denmark, Greenland and the Faroe Islands. The long daily time series include: precipitation, temperature, atmospheric pressure and cloud cover for a number of Danish locations as well as precipitation and temperatures for two Greenland Stations 1874-2007 The long monthly time series include: temperatures, precipitation, atmospheric pressure, cloud cover and snow for stations in Denmark, Greenland and on the Faroe Islands The long annual time series include: temperature for a number of stations in Denmark, Greenland and on the Faroe Islands (1873-2007), as well as temperatures, precipitation, hours of sunshine and cloud cover given as national averages for Denmark All the above mentioned datasets are freely available through the annual updates of DMI Technical Reports at www.dmi.dk
DMI is responsible for the systematic surveillance of sea ice conditions in the Greenland waters. Observations concerning ice conditions have been collected for approximately 125 years and an extensive volume of data is available in a graphic format as monthly summaries, ice maps etc. Since 1959 special emphasis has been on the waters south of Cape Farewell (the southern tip of Greenland) in order to improve navigation safety in what is an important navigation area. Ice maps containing detailed information on the relevant ice conditions are prepared several times a week. The most recent maps are available in vector graphic format. Since 2000 weekly summaries of the ice conditions for all Greenland waters have been prepared. These summaries, which are based on satellite data, are generated semi-automatically and are primarily intended for climatological analyses as the energy radiation from the sea is highly dependent on whether it is covered with ice or not.
Solar Ultraviolet (UV) radiation at different wavelengths is measured by DMI at two stations in Greenland, namely Pittuffik and Kangerlussuaq. In addition, DMI performs weekly ozone soundings at Illoqqortoormiut as well as sporadic ozone soundings at Pituffik during the winter months.
DMI operates and receives data from a network of approximately 100 automatic meteorological stations in Denmark, Greenland and on the Faroe Islands. Measurements are made in accordance with the WMO recommendations. As of 2001 a special dedicated network of (manual) stations for climatological observations has been discontinued, due to the convergence between the different network technologies. The objectives behind this decision are to eliminate human errors, to benefit from potential savings due to this rationalisation, and to reach a higher observation frequency. Climatological data are now obtained from the automatic network described above. Climatological data are collected to define the climate in Denmark, Greenland and on the Faroe Islands and to create a national database for a wide range of enquiries and research activities. Climatological work mostly consists of preparing annual and monthly statistics, including calculation of averages, percentiles and standard deviations. Substantial recorded data are needed to establish reliable averages and trends. In 2008 the daily inflow of data from Denmark, Greenland and the Faroe Islands was 100,000 observations, and the central database at DMI currently contains more than 300,000,000 observations. Some of the recorded data are from as early as 1872. A monthly summary is prepared for the three stations in Denmark, one on the Faroe Islands and eight in Greenland using the CLIMAT format. These data are routinely submitted via the GTS. Radiation is measured as 10- minute mean values of global radiation at the DMI operated weather station.
As part of the GAW programme, Denmark contributes to the Global Ozone Observing System (GO3OS) with three stations in Greenland and one in Denmark. The stations in Greenland are: Kangerlussuaq, Pituffik and Illoqqortoormiut The station in Denmark is located in Copenhagen The stations in Greenland are primary and secondary stations in the Network for the Detection of Stratospheric Change (NDSC) that is supported by the International Ozone Commission.
Only one GUAN station is designated for Denmark, Greenland and the Faroe Islands and it is situated in Narsarsuaq (WMO nr. 6186), Greenland. The station is run by DMI and is operated in accordance with the required standard.
The seven designated GSN stations in Denmark, Greenland and on the Faroe Islands are all run by DMI and include (Numbers are WMO station numbers): Greenland: 4211 Upernarvik, 4250 Nuuk, 4320 Danmarkshavn, 4360 Tasiilaq, 4390 Prins Christian Sund; The Faroe Islands; 6011 Tórshavn Denmark: 6186 Copenhagen. All of these stations currently meet the required standard for surface observation.
Wind resources measurements near several settlements to determine whether wind energy can be used as a local energy source and replace fossil fuel. The project concentrates on settlements in Sisimiut and Uummannaq and includes 6 settlements. A standard measurement setup consisting of a 10 m NRG-Systems meteorological mast equipped with a cup anemometer, a wind vane and a thermometer has been installed at each location. A 6 kW demonstration wind turbine has recently been erected in Sarfannguaq to document the potential of merging wind energy with a diesel powered electricity system. Network type: Wind resources
The PMK Network is part of the national network for deposition measurements. The aim is a longterm monitoring concentration and deposition of different air transported compounds. The aim is also to generate knowledge about longterm variation in the deposition field, and to give background data from low polluted areas for calculation of pollution deposition in more polluted areas. The Air and Precipitation Chemistry Network includes about 25 sites (14 in northern Sweden) where precipitation from open accumulating samplers are collected and analyzed for pH, SO4, NO3, NH4, Cl, Ca, Mg, Na, K, conductivity, and amount of precipitation (Table 4, #1.2). At 3 sites (one in northern Sweden) precipitation is analyzed for heavy metals, mercury, and methyl-mercury (Table 4, #1.3).
At the top of the micrometeorological tower (102 m) at Norunda north of Uppsala, carbon dioxide and methane concentrations are also measured.
at the Institute for Space Physics (IRF) in Kiruna, an automated weather station logging air temperature, humidity, wind, pressure, and UV-radiation has been in operation since 1996
Investigations within many areas of biosciences and geosciences are carried out at the station. The emphasis of staff research is on plant ecology and meteorology. The main objectives of the ecological projects are to study the dynamics of plant populations and to identify the controlling factors at their latitudinal and altitudinal limits. The meteorological projects deal with recent climate changes in the region, and also with local variations of the microclimate in subalpine and alpine ecosystems.
The Faculty of Forestry at SLU has two research stations with experimental forests, two experimental forests with permanent staff, three without permanent staff and a large number of long-term field trials. These facilities are spread over the country.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.