Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 139 Next
41. The significance of localised nutrient regeneration for the development and maintenance of nuisance macro-algal blooms in shallow embayments

The main objective was to investigate the importance of the sediment as a nutrient source for blooms of nuiscance filamentous algae. Nutrient fluxes from the sediment were hypothesised to be of greater importance in maintaining algal biomass than were nutrients originating from the overlying water column. We aimed to assess the relative importance of algal mats on sediment geochemistry and nutrient release under stillwater and controlled flow conditions. Using nutrient fluxes as a surrogate for ecosystem function, we wished to investigate the role of species richness in maintaining the integrity of nutrient diagenesis. In this context, it is not necessarily the number of species that is important in maintaining nutrient supply to algal blooms, but the contribution individual species make to mediate nutrient release.

Biological effects Biology bloom filamentous algae nutrient flux Sediments
42. Metabolic and behavioural reactions of Nordic krill, Meganyctiphanes norvegica, from Gullmarsfjorden towards environmental factors

The phsyiological and locomotive reaction to factors that influence environmental behaviour of Nordic krill from the Gullmarfjorden were studied in terms of swimming energetics, predator avoidence and food utilization. In a newly developed experimental approach, individuals were maintained under defined conditions in flow through chambers and continuously monitored for swimming activity and oxygen consumption. Chemical, physical and biological parameters were applied and the reaction of the krill determined. Stress levels, defined this way, will serve as a reference for unfavourable conditions in the field. Thermal characteristics of digestive enzymes from the midgut gland were furthermore identify the optimum conditions for nutrient assimilation. The results will contribute to the understanding of diel vertical migration, dispersion and aggregation of krill which, in turn is essential for the interpretation of ecosystem dynamics and trophic interactions.

Biological effects Biology krill predator avoidence swimming energetics food utilization oxygen consumption
43. Relative importance of different sources of particulate matter in the Kongsfjorden environment

The general objective of this research concerns the quantitative and qualitative study of particulate matter retained in natural (sea-ice and sediment) and artificial (sediment traps) traps in order to determine the main origin (autochtonous and allochtonous) and the relative importance of different fractions of particulate matter and to follow their fate in the environment. To quantify the autochtonous origin of particulate matter, primary production, nutrient uptake, biomass distribution, phytoplankton community structure and fluxes in the first levels of the trophic chain will be investigated. Studies will be conducted in the sea-ice environment and in the water column and compared to the particle fluxes measured both in the water, using sediment traps and in the sediment, by radiometric chronology, in order to estimate the different contribution of these habitats to carbon export to the bottom. The zooplankton will be identified and counted and primary production, nutrient uptake and phytoplankton dynamics will be related to hydrological structure and nutrient availability in the environment. The Kongsfjord results particularly suitable for the main objective of this research as it is influenced by important inputs of both atmospheric (eolic and meteroric) and glacial origin and is characterised by a complex hydrological situation which may promote autochtonous productive processes, thus determining important particulate fluxes.

athmospheric carbon dioxide Biological effects Biology Arctic haze Hydrography inorganic and organic nutrients particulate Sea ice Ice Oceanography Biodiversity Arctic Ice cores Data management Atmosphere Ocean currents phytoplankton sediment radiometric chronology zooplankton
44. Study of the mechaninsms of inorganic carbon acquisition in macroalgae of the Swedish westcoast

The aim of our work was to study the occurrence of inorganic carbon pumps in the cell membrane and their importance in the supply of C for photosynthesis in different macrophyte species. This was performed by checking and comparing responses of several green, brown and, especially, red marine macroalgae species under CO2 disequilibrium conditions in the presence of buffer and/or inhibitors of carbon uptake. In addition, the effect of the different treatments was also checked in the marine phanerogam Zostera marina.

Biological effects Biology photosynthesis CO2 macrophytes
45. Benthic Flux rates. Measurement of flow rates through and fluxes from individual tubes and burrows of benthic organisms

To asses the utility of a new range of microelectrode sensors in measuring the flux rates of oxygen and nutrients across the sedimentary diffusive boundary layer and into and through macrofaunal tubes and burrow structures.

Biological effects Biology oxygen polychaete bioturbation Sediments
46. Bioaccumulation, physiological and biochemical effects of pollutants in mussels

In order to evaluate the capacity of mussels to accumulate pollutants and to enhance growth and physiological effects, an investigation was carried out in the Faroe Islands and in the Skagerrak. In March 2000, about 1500 mussels of proper dimensions (length ranging between 5 and 6 cm) were collected in the Kaldbak Fjord (Faroe Islands) on a 10m water column. Selected mussels were divided in 4 groups (320 each) and deployed in 4 different stations (one at the Faroe Islands and three in the Skagerrak). Semipermeable membrane devices (SPMDs) were also deployed in the same stations for the preconcentration of lipophilic pollutants. One month later (end of April-beginning of May) mussels and SPMDs were recollected and sent to different laboratories for the determination of various parameters.

Mytilus Biological effects Biology scope for growth Organochlorines PCBs Heavy metals PCB bioindicator PAHs Long-range transport Contaminant transport Exposure PAH Persistent organic pollutants (POPs) Dioxins/furans SPMD bioconcentration
47. Interactions among infauna, microorganisms and polycyclic aromatic hydrocarbons in marine sediments

Dose-response experiments using 5 different sediment concentrations of fluoranthene (Flu) and pyrene (Py) respectively. Measuring radioactive marked Flu and Py in brittlestars and polychaetes and microbial degradation of Flu and Py in sediment. Also growth rate of brittlestars and polychaetes and determination of regenerationtime of brittlestar-arms.

Biological effects Biology PAHs microorganisms Petroleum hydrocarbons infauna Exposure Sediments
48. Bioactivation of polyaromatic hydrocarbons (PAHs) in crab (Cancer pagurus), shrimps (Crangon spp and Palaemon spp) and a polycheate (Neries pelagica).

To be completed.

Biological effects Biology PAHs
49. Microalgae as Cell Factories for Chemical and Biochemical Products

• To survey and document the state of the art in microalgal technology • To examine legislative and regulatory matters connected with the field • To bring together the various information on European algal collections into a single on-line portal • To develop the on-line database into a comprehensive tool for dissemination of knowledge pertaining to microalgae and microalgal research • To investigate current barriers to the use of microalgae and identify possible future uses of microalgae and microalgal technology • To help steer the direction of European research • To carry out technology transfer to the end users within the network, with measurable benefits for efficiency • To ensure the strategy involves dissemination to end-users outside the network partners • To ensure network cohesion and good communication between the partners • To develop an ongoing ‘virtual institute’ model and lay the groundwork for future RTD projects

Biological effects Food webs
50. Mitigation of effects of high power sonars on marine mammals

• This proposal is to develop a reliable method for forecasting the occurrence of marine mammals based on time of year, location and oceanographic conditions. • The work will exploit components of existing NERC-funded research within the core science programmes of SMRU and SAMS. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the Sea of the Hebrides and the Minch. • Historical data on marine mammal sightings will be supported by an observational programme, including the use of acoustics and satellite and radio tags. • Simultaneous oceanographic data will be collected during the above programme, supplementing the extensive SAMS archive of time-series from this area. • A proposed operational monitoring network in the southern Minch will be adapted to add acoustic observations to the planned suite of physical and chemical sensors. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The validity of this relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
51. The prediction of marine mammal aggregations by reference to oceanographic observables in the seas to the north and west of the Hebrides

• There is a clear need to predict the occurrence of marine mammals in order to minimise the possible harmful impact of military sonar activities, some of which have recently received extensive public media exposure. • No military or civilian method currently exists to predict the possibility of encountering marine mammals. • The proposed work will exploit components of existing NERC-funded research within the core science programmes of SAMS and SMRU to develop a predictive tool that will link marine mammal occurrence to classical oceanographic observables. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the open seas to the north and west of the Hebrides. • Existing NERC-funded SAMS cruises in this area will collect oceanographic data, supplementing remotely sensed imagery and the extensive SAMS archive of time-series from this area. • A key element in achieving the proposal objective (and in furthering NERC science objectives) will be the recruitment of SMRU observers and equipment to SAMS cruise complements so that marine mammal sightings may be linked directly to the oceanographic research programme. • Additional SMRU deployments on board vessels of opportunity will increase the density of the observational programme. • The suitability of SOSUS acoustic data as an indicator of marine mammal presence will be investigated. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The value of the relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
52. Benthic invertebrates as bioindicators of hypoxic conditions in coastal marine waters

To be completed.

Biological effects Biology
53. Salinity stress of young Nephrops as a result of discarding after trawling

To be completed.

Biological effects Biology
54. Life at the limits:ecophysiology of krill during diurnal vertical migrations into hypoxic waters

To be completed

Biological effects Biology
55. The ecophysiology of crustaceans used as biomarker of stress

Aim of the research is to diagnose and prognose ecologically relevant effects of pollution using ecological and physiological biomarkers in crustaceans. Field studies combined with laboratory experiments are carried out on epibenthic and relatively sedentary crustaceans as e.g. Norway lobster and amphipods. Changes in population structure, behaviour, fertility, recruitment, blood and nerve physiology, energy reserves and kinetics and body load of trace metals (mainly manganese, copper and iron) related to stress from toxic compounds and hypoxia are investigated.

Biological effects Biology
56. Reducing the environmental impact of sea cage fish farming through the cultivation of seaweeds

Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.

Pathways Biological effects Fish Spatial trends Environmental management Contaminant transport Food webs Sediments Pesticides Temporal trends Ecosystems
57. Environmental sensitivity of cold water corals

Distribution • What is the current distribution of coral colonies in the North Sea? • Where are coral colonies located on the structures? • Do any colonies show evidence of exposure to drill cuttings? Monitoring & Environmental Recording • What hydrodynamic regime and levels of suspended particulate material are coral colonies exposed to? • Does the coral skeleton retain an archive of any past contamination? • Does skeletal growth vary over time and does this correlate with any past contamination? • How variable is the rate of coral growth and does this correlate with any environmental variables? Environmental Sensitivity • What effect does increased sediment load have on coral behaviour and physiology? • What effect does exposure to discharges (e.g. cuttings and produced water) have on coral behaviour and physiology? • Are such exposures realistic in the field?

Shelf seas Biological effects Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Oceanography Biodiversity Local pollution Ecosystems
58. The Effects of Turbidity on Marine Fishes

(a) To assemble and further develop an integrative methodology for in situ evaluation of the effects of turbidity and hypoxia on fish physiological and/or behavioural performance. (b) To determine experimentally the threshold values beyond which oxygen and turbidity levels are liable to alter fish physiological and/or behavioural performance. (c) To integrate the results obtained in a conceptual and predictive model. Main expected achievements: [1] establishment of a link between laboratory studies, studies in mesocosms and field studies, using the most advanced techniques for monitoring behaviour in various environmental conditions. [2] an understanding of the impact of water turbidity and oxygenation on three major components of the behavioural repertoire of fish: habitat selection, predator-prey interactions and schooling-aggregation. [3] Predictive ability for the effect of the environmental variables studied on ecologically relevant behaviour.

Shelf seas Biological effects Fish Environmental management Local pollution Food webs
59. Effects of UV radiation on lipids, fatty acids and nutritonal quality of Arctic marine alga and zooplankton

Effects of UV radiations on lipids, fatty acids and nutritional quality of Arctic marine algae and zooplankton

Biological effects UV radiation
60. Bacterial diversity in marine sponges

The aim is to study the diversity and function of marine bacteria closely associated with marine sponges. The special character of life strategy of the community (symbiosis – commensalism), with special emphasis to the identity and the recruitment of bacteria during live cycle of the sponges will be described.

Shelf seas Biological effects Biodiversity Ecosystems