The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
i. Determine mercury, metals and persistent organic contaminant pollutants (POPs) concentrations in lake trout harvested from two locations (West Basin near Hay River, East Arm at Lutsel K’e) and burbot harvested from one location (West Basin at Fort Resolution) in 2015 to further extend the long-term (1993-2013 (POPs) and 1993-2014 (mercury)) database. ii. Determine POPs trends in lake trout and burbot using our 1993-2014 data base. iii. Continue our investigations of mercury trends in predatory fish to include lakes in the Deh Cho, Great Bear Lake, and other lakes as opportunities arise. iv. Participate in and contribute information to AMAP expert work groups for trend monitoring for POPs and mercury. v. Integrate our mercury trend assessments with studies we are conducting in the western provinces as part of Canada’s Clear Air Regularly Agenda for its Mercury Science Assessment. vi. Work with communities in capacity building and training.
In order to assess the spatial and temporal patterns of the a-, b- and g-isomers of hexachlorocyclohexane (HCH) in the arctic biotic and abiotic environment, it is proposed that: (1) concentrations and ratios of HCH isomers be compared over time in air, water, seals, beluga, polar bears and seabirds to determine any shifts in isomeric ratios and how those shifts interrelate among the various media, and (2) concentrations and ratios of HCH isomers be compared spatially in the abiotic and biotic media and reasons for any patterns explored.
Purpose is to estimate the pollution fallout in rain. Rainwater is analyzed for acidifying compounds, nutrients, POPs and metals. Project is managed by Finnish Environmental Centre (SYKE) and Finnish Meteorological institute (FMI).
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. STUK is responsible for monitoring of radioactivities in atmosphere. STUK operates a network of eight aerosol samplers from which three are located in Finnish, Lapland at Rovaniemi, Sodankylä and Ivalo. The sampling is done either weekly or bi-weekly. Gammaspectroscopic measurements are done in the laboratory in Rovaniemi. The lowest activities are detected at microBq/m3 level.
Monitoring of air quality and deposition.
Monitoring of direct deposition. Project is run by Finnish Meteorological Institute (FMI).
The overall objectives for operation of the station will follow those defined in the AMAP programme. The main interests are the levels and trends of airborne toxic pollutants (POPs and heavy metals) in northern Fennoscandia.
In the context of the tasks SAON SG steering group, the topology of the Arctic hydrometeorological observation network can be presented in the following concise form: 1. Agrometeorological; 2. Actinometric; 3. Aerological (radiosounding); 4. Water balance; 5. Hydrological on rivers; 6. Hydrometeorological on lakes; 7. Glaciological; 8. Meteorological; 9. Marine hydrometeorological (in the coastal zone, river estuaries, open areas including marine vessel and expeditionary); 10. Avalanche; 11. Ozone measuring; 12. Heat balance; 13. Atmospheric electricity; 14. Water, soil and snow surface evaporation; 15. Chemical composition of water and air. Observation network data are operationally transferred to Roshydromet’s data telecommunication network except for those indicated in items 4, 7,12-15. The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones. Meteorological observations are considered as the main type of observations. To establish a common database and control timely and complete collection and distribution of information, a catalog of meteorological bulletins is being created to be the plan of hydrometeorological information transfer from the sources to Roshydromet’s data telecommunication network to distribute among information recipients The catalog of meteorological observations is maintained by State Institution “Hydrometeorological Center” and State Institution “Main Radio-Meterological Center”. Electronic version of the catalogs of meteorological bulletins is maintained by State Institution “Main Radio-Meterological Center” and located on the Internet site http://grmc.mecom.ru. The catalog of meteorological bulletins contains the following information: − Name of Roshydromet’s subordinate Federal State Institution and observation point to input data into the automated data system; − shortened title of the hydrometeorological bulletin in proper format; − observation data coded form; − hours of observation; − data transfer check time; − number of observation points taking part in one bulletin; − lists of five-digit indices for observation points. Changes are entered into the catalogs of meteorological bulletins quarterly. WMO’s WWW is considered as the main foreign information consumer. The lists of WMO correspondent stations are given in WMO publications # 9, vol. C, part 1 (Catalog of Meteorological Observations), vol. A (Observation Stations). 2. SAON is expected to stimulate the process of improving configuration and completeness of the circumpolar region monitoring system as a potential tool for international consolidation of the opportunities available in the functioning of observation networks in order to improve national standards quality and ensure more complete compliance of the Arctic research strategies proposed to socioeconomic needs and interests of Arctic countries 3. The catalog of points and main observations is given in Table 1 (see Fig. 1). The maximum development of the Russian hydrometeorological observations in the Arctic was reached in early 1980s, when information was received from 110 stations. In subsequent years, the number of stations decreased more than twice (Fig. 2). The current level of observations is determined by the functioning of a network consisting of 49 points two of which are automatic weather stations. Three points are temporarily removed from operation. In short term, 8 automatic stations are expected to be opened; while in medium and long term, the number of manned observation points will increase up to 52-54, and the number of automatic ones – up to 20-25. For the manned network, the meteorological program includes a set of eight-hour observations of: atmosphere pressure, wind parameters, air and soil temperature, relative humidity, weather phenomena, cloud height, visual range, precipitation, while for automatic weather stations – a set of reduced 4-hour observations. The marine hydrometeorological program includes coastal observation of temperature, water salinity (density), sea-level variations, heave, ice distribution (and thickness) as well as meteorological parameters under the change of observation conditions from hourly to ten-day observations. The river hydrological program is quite similar to the marine one. It does not include observations of water density, however, they can be included for the stations having a special status, measurement of water discharge, alluvia and chemical composition of water. The programs will include hourly and ten-day observations. The aerological program will include 1-2 –hour measurements of: atmosphere pressure and wind parameters on selected isobaric surfaces. Actinometric observations include measurement of 5 components of atmosphere radiation balance in case of the full program and measurement of total radiation under a reduced program. Network type: The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones.
INGV operates in the Arctic region with observational activities in Svalbard, near the area of Ny-Ålesund, where the Institute has installed three stations to monitor ionospheric scintillation, currently in operation. In Svalbard, the PEGASO (Polar Explorer for Geomagnetic And other Scientific Observations) project has performed several stratospheric balloon launches (Pathfinders) with the aim of studying the Earth's magnetic field in an area with poor coverage measurements and of studying the possible trajectories of circumpolar winds at high altitudes. At the Greenland Base of Thule, INGV in collaboration with CNR, DMI (Danish Meteorological Institute), University of Rome La Sapienza and ENEA, carries out spectrometric observations for the analysis of stratospheric chemistry and mesosphere to monitor the ozone layer. In cooperation with In addition, an upper atmosphere permanent observatory for magnetosphere and Ionosphere sounding, including Auroras, and other geophysical processes is operated in Greenland, Zackemberg station in cooperation with Danish scientists. INGV is currently involved in the coordination of two European initiatives: a) EMSO (European Multidisciplinary seafloor Observatory) a European research infrastructure of ESFRI (European Strategy Forum on Research Infrastructures), which counts to establish a multi-parametric permanent network in the surrounding European seas, including the Arctic area. The project began in April 2008 with the participation of 11 European countries; b) EUROANDRILL, created under the aegis of the European Science Foundation, aims to drill key areas of polar areas to study past and future climate. The project involves the involvement of 10 European and 3 extra-European countries. The Institute is also active in other projects in the Arctic, in particular actively participates in the seismic network GLISN, developed from the existing stations in and around Greenland.
Within the Unit for Environment and Energy Modeling (UTMEA), the Laboratory Earth Observations and Analyses within UTMEA (UTMEA-TER) carries out long-term observations of stratospheric chemistry and mesosphere in Greenland, Thule station. Stratospheric processes (evolution in atmospheric temperature, ozone depletion) and chemistry are monitored and investigated by stratospheric lidar as well as spectrometers, in strong cooperation with INGV and DMI. Since 1990 numerous measurement campaigns have been carried out, also on the international level (EASOE, SESAME, THESEO, ESMOS/Arctic. ENEA’s Diagnostics and Metrology Laboratory (UTAPRAD-DIM) has been participating in polar campaigns since the late 1990's. In particular, it has developed the laser spectrofluorimeter CASPER (patented) and prototypes of different lidar fluorosensor: for ships, underwater remotely operated vehicles and patented miniature Unmanned Aerial Vehicles. These instruments participated in 3 oceanographic cruises (2006, 2007 and 2008) at Svalbard, on board of the "Oceania" in the context of a collaboration with the Institute of Oceanology of the Polish Academy of Sciences. Their use is also envisaged under the Italian-Canadian CLIMAT (complementary use of lidar to improve bio-optical models derived from satellite system in the St. Lawrence).
Long-term Obs. Site. Super-sites、experiment-sites Traverse Obs. Line
Italy’s leading national research institution, the CNR has been supporting research activity at Ny-Ålesund since 1997, when the scientific station “Dirigibile Italia” was acquired. This infrastructure supports Arctic research conducted by the national research community. In 2008, it was improved through the construction of the Amundsen-Nobile Climate Change Tower and the actikvity largely enlarged with the Climate Change Tower Integrated Project (CCT-IP - www.isac.cnr.it/~radiclim/CCTower). Scientific cooperation, particularly focused on atmospheric science including pollutants distribution and ozone studies, on oceanography and on marine biology and biodiversity was developed by CNR scientists in particular with NPI and AWI; CNR is coordinating actions (EU-GMOS project) to improve and implement the observational system related to mercury. CNR is also involved in the SIOS preparatory phase project, and in Italy it is engaged to coordinate interested Italian expertises in a common scientific plan and actively promote Italian participation to SIOS final multidisciplinary platform. In the years to come, CNR intends to promote the improvement of research activity and to reinforce international cooperation of the Italian research groups, and to provide a significant contribution to the observational system in the Arctic, following the lines recommended by SAON. Together with the improvement/development of a supersite at Ny-Ålesund and large contribution to SIOS, CNR will operate to contribute/sustain thematic networks (Polar-AOD for aerosol and GMOS for mercury leading from CNR).
1. Priority Research Theme (1) Clarification of the mechanism of the Arctic amplification. (2) The role of Arctic in the global climate change and future projection. (3) Evaluation on the influence of the Arctic Environmental Change to the weather in the Japan area and fishery. (4) Future projection of the sea ice distribution in relation to the evaluation Arctic route. 2. Basic infrastructure (1) Arctic research cruises by Japanese and foreign ships/ice breaker. (2) Cloud radar system. (3) Data archive system. 3. Establishment of “Japan Consortium for Arctic Environment Research” 4. Budget size: 650, 000, 000 Japanese Yen per year. (appox. 8 million USD per year) Network type: research programme
Monitoring and study of free atmosphere in the North Polar Region
To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations
Ice-drifting buoy observation in sea ice area of the Arctic Ocean Main gaps: not well documented…
Cooperation with: ・Institute of Atmospheric Optics, Tomsk, Russia ・Permafrost Institute, Yakutsk, Russia ・Central Aerological Observatory, Moscow, Russia ・Institute of Microbiology, Moscow, Russia