Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 221 - 240 of 386 Next
221. 1. Behaviour of individual copepods in the laboratory when exposed to patchiness of food and varying predation risk, 2. Distributions of copepods and microzooplankton in the field, 3. Distribution of marine snow in the field and association to grazing di

1. Behaviour of individual copepods in the laboratory when exposed to patchiness of food and varying predation risk Copepods experience a variable food environment with favourable patches interspersed with large volumes of water with too low food concentration to sustain growth and development. Critical traits in copepod behaviour are therefore the ability to detect and remain in patches of food, and at the same time avoid predation. The objectives of the project are to quantify patch responses of selected small copepods and to observe how predator presence may affect foraging behaviour. Methods include video observations in small aquaria and bottle incubations with defined patches of food. Laboratory experiments showed that copepods have the ability to find and remain in food patches and that this was beneficial for them in terms of reproduction. Predation enhanced the advantage to stay in patches since increased predation risk was associated with food search. 2. Distributions of copepods and microzooplankton in the field The vertical distribution of copepods and their prey potentially has a strong impact on predator-prey interactions in the pelagic environment. The project aims at quantifying the small-scale (metre) distributions of these organisms. Since plankton nets are unsatisfactory at this resolution, an in situ video camera designed to observe copepods has been developed. The observations with the camera are amazing, a hitherto unknown world can be revealed. Results from filming with the camera shows that copepods sometimes aggregated around the pycnocline, but rarely respond to in situ fluorescence, a crude measure of food abundance. The distribution will be a balance between the swimming capabilities of the copepods and the turbulence field. At present, models have been developed that predict the distributions, and the project is in a field testing phase. 3. Distribution of marine snow in the field and association to grazing dinoflagellates The particle dynamics during blooms of phytoplankton has received considerable attention recently. It has been shown that physics will have a profound impact on the fate of phytoplankton blooms and this project aims at clarifying the combined role of physics and biology on the decline of phytoplankton blooms. In two field studies, simple coagulation theory has been successful in predicting bloom dynamics. In the Gullmarfjord, Sweden, a spring bloom ended rapidly following a storm event and mass sedimentation of marine snow was observed by in situ video recordings. Grazing by heterotrophic dinoflagellates prevented further recovery of the diatoms. In a second field study in the Benguela upwelling region, South Africa, continuous aggregation of large diatoms was observed. No sedimentation occurred, however, and the reason was found to be colonisation and grazing on the aggregates by the dinoflagellate Noctiluca scintillans. 4. Hunger responses in copepods exposed to variable food supply Food patchiness and the necessity to avoid predators means that copepods will have highly variable access to food. The aim of this project is to study dynamics of ingestion under non-steady state food conditions. Small copepods that do not store lipids have a limited capacity to survive periods of low food and should be adapted to fast and efficient utilisation of ephemeral food patches. The experimental protocol includes traditional bottle incubations with copepods and diatoms, high abundances and small bottles are used to detect fast changes (min-hours). The results show that brief periods of starvation (1-3 h) stimulated ingestion, but only temporarily on time scales of gut filling times. In contrast, longer starvation times (6-14 h) lead to elevated ingestion rates lasting longer than gut filling time. This could indicate changes in the assimilation efficiency and experiments are planned on the topic for January 1999.

Biology
222. Shrimp taxonomy and ecology - associations and distribution of cryptic shimps in the coral reef environment

This project aims to reveal more understanding in the species diversity and distribution of cryptic shrimps in coral reefs. Since these shrimps associate with other invertebrates to find food and shelter, they are often species specific in their choice of host organism. This is an important limiting factor in their distribution that is studied. Also the some 'species complex' found among shrimps inhabiting sea anemones are studied if they are separate species or not, using both taxonomical and ecological data! The impact of habitat diversity on the speciation of these associated shrimps is also studied. -------------------------------------------------------------------------------- Areas studied: The taxonomy and ecology of the shrimp fauna in three geographically different areas of the Indian Ocean - Inhaca Island, Moçambique, Phuket Island, Thailand and the coast of Western Australia.

Biology
223. Effects on marine organisms of sediments contaminated with tributyltin with special reference to sub-arctic and arctic conditions,Effects of TBT- and triazine/copper based antifouling paints on the early development of cod, Effects of antifouling agents

Effects on marine organisms of sediments contaminated with tributyltin with special reference to sub-arctic and arctic conditions The use of antifouling paints based on tributyl tin (TBT) is now restricted in most European countries. However, the prohibition involves only vessels less than 25 m length. As a result many coastal areas and harbours show raised levels of TBT in water and sediment, high enough to cause effects on sensitive organisms. Dredging operations in such areas may increase exposure of organisms to TBT. As the degradation processes are temperature dependent contamination by TBT in arctic or sub-arctic waters may be more serious. The specific objectives of this study, which is performed in co-operation with the University of Iceland (Prof. J. Svavarsson), are to evaluate a/ the effect of temperature on the uptake of TBT by the gastropod Buccinum undatum during exposure to TBT-contaminated sediment and b/ the effects of contaminated sediment on the development of imposex (penis and vas deferens development of females) at different temperatures.The project involves both laboratory experiments and field studies. The project started in late autumn 1995 and results are not yet available. Effects of TBT- and triazine/copper based antifouling paints on the early development of cod Elevated amounts of components from antifouling paints has been found in sediment and in organisms in Icelandic coastal waters. Also imposex in dogwhelks and whelks has been observed. In order to evaluate any impact on the economically important fishery and especially focused on cod, experiments are performed in the laboratory following the early development of the fish from fertilization up to hatching when exposed to antifouling components. No results are yet available. Effects of antifouling agents in the marine environment. Early development in lumpsucker (Cyclopterus lumpus) preliminary studies. The objectives of the study are to reveal the effects of chemicals from antifouling paints on the development of the lumpsucker (Cyclopterus lumpus) - in situ and under laboratory conditions. The study focuses on TBT (tributyltin) and a chemical, Sea-nine, replacing TBT as the major toxic agent. We will evaluate the effects of TBT in the laboratory and under field conditions, but Sea-Nine under laboratory conditions only. Laboratory studies are based on the use of flowthrough conditions with different concentrations, while in the field studies we use cages with eggs and larvae. The eggs of the lumpsucker are allowed to glue to glass slides following fertilization. These are then easily transferred to either laboratory set up or into small cages, which will be set out at different distances from harbours. Also semipermeable membrane devices (SPMD:s) will be used in order to determine the actual water concentrations. The effects of TBT from the harbours is evaluated by measuring imposex in gastropods (Nucella lapillus) at the coastline. The mortality of the eggs and the larvae is determined and different physiological measurements are made in order to detect sublethal effects of the contaminants in question. The project has just started and no results are yet available.

Biology Local pollution
224. Latitudinal Temperature Gradients And The Molecular Control Of Muscle Function In Grammarid Amphipods

The project aims to examine the effects of latitudinal temperature change on muscle function in amphipod crustaceans. As temperature has a profound effect on the ability of muscles to contract and produce force/power for movement, we are interested to see if there is any compensation for the effects of temperature between amphipod populations living at different latitudes. To this end we are studying Gammarid amphipod species due to their wide geographical distribution along the coast of North West Europe from temperate conditions in the Northern Atlantic (at approx 15°C in the summer) to polar conditions in the Arctic (at -1°C in the summer). In particular we are interested in the effects of temperature gradients on heavy chain myosin genes, as these genes regulate critical aspects of muscle contraction and can be influenced by changes in environmental temperature by switching from one gene variant to another. During our visit to Ny-Ålesund we hope to collect at least 3 different species of gammarid amphipod, including Gammarus locusta, G. zaddachi, and G. oceanicus to represent populations from the northerly limit of their latitudinal range. The muscle tissue will then be examined for sequence variations in specific active regions of the myosin genes that are known to influence the production of force. Sequence variation will be compared to the data collected from populations in the UK and in Tromso, Norway (70N). Ultimately the results will be correlated to the genetic diversity of the amphipod populations to assess the evolution of myosin genes in animals with a wide distribution pattern and inherent adaptability to temperature change.

Biology
225. European collaboration: Benthic Marine Research Feast or Famine: How to be asuccesful marine benthic consumer

Laboratory studies have demonstrated that M. edulis close its shell and stops pumping when the algal concentration becomes below 1500 cells cm-3 of Phaeodactylum tricornutum equivalent to 1 mg Chl-a m-3 (riisgård and Randlov, 1981; Riisgårs , 1991).

Biology
226. Reproduction and feeding of the commensal Symbion pandora

We investigated the reproductive and feeding biology of the commensal Symbion pandora (Cycliophora).

Biology
227. Bioturbation by macrobenthic functional group. Interaction, modeling and effects on sediment biogeochemistry

In order to improve and calibrate each elementary model an the global bioturbation model, data from laboratory experiments involving different more or less complex nacrobentihic communities (represented by different bioturbation functional groups) are nedded.

Biology
228. Regeneration and Bioluminescence in Amphiura filiformis

In previous studies undertaken at KMRS we have been investigating the link between regeneration and the functional recovery of bioluminescence in the arms of Amphiura filiformis.

Biology
229. Quality signalling, parasites and sexual selection: gobies as a model system

The main objective of the project was to investigate yje reproductive dynamics of the two-spotted goby, a small semi-pelagic fish abundant along rocky shores of Northern Europe.

Biology
230. Lipids, Buoyancy and vertical distribution of calanoid copepods

To measure overall densities of overwintering copepods from Gullmarsfjorden in order to understand the role of lipids in their vertical distribution and buoyancy.

Biology
231. Investigation of the ontogeny and phylogeny of certain glial cells in Bilateria

In secretory cells of the vertebrate floor plate and subcommissural organ are descendant of an ontogenetically ancient type of radial glial cells.

Biology
232. Behavioural responses of the nordic krill (Meganyctiphanes norvegica) to light

To examine the effect of light intensity on swimming activity in Krill.

Biology
233. Ciliary upstream-collecting in marine filter-feeding invertebrates

The main objective was to study the basic mechanism of ciliary upstream-collecting on a selected marine invertebrate.

Biology
234. Variation in primary sex characters in goldsinny and corkwing wrasse in relation to variation in mating system

Variation in primary sex characters of wrasse in relation to reproduction strategy and environmental conditions:

Biology
235. Feast or famine: how to be a successful marine benthic consumer

Five French Scientists orginating from the Observatoire Océnologique de Banyals, stayed at the Kristineberg Marine Station during two weeks.

Biology
236. Proximate ecological controls on the swimming behaviour of coastal euphausiids

To examine the way in which light intensity and spectrum affects the swimming behaviour and activity of the pelagic euphausiid Meganyctiphanes norvegica.

Biology
237. Cell lineage and gene expression during cleavage and larval development of Meganyctiphanes norvegica (Crustacea, Malacostraca, Euphausiacea)

The project is part of a large comparative study on the evolution of the development of crutaceans, mainly malacostracans (higher crustaceans).

Biology
238. Climate Change and Competitive Interactions

The effects of climate change in a dynamic competitive interaction between two or more species can be bought about either as direct responses of species to change or indirectly through effects on competing species. Intertidal barnacles are ideal model organisms to test these alternative causal mechanisms, being easily censussed and directly competing for space. Single- and multi- species models will be developed for barnacles in SW England to determine whether direct or indirect mechanisms better predict responses to change. The models will include functions for space-limitation, environmental influence and, in the latter models, functions for interspecific competition. Historical data from a network of sites collected over a 40-year period will be used to develop and test the models.

Climate variability Spatial trends Climate change Biodiversity Temporal trends Ecosystems
239. Reducing the environmental impact of sea cage fish farming through the cultivation of seaweeds

Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.

Pathways Biological effects Fish Spatial trends Environmental management Contaminant transport Food webs Sediments Pesticides Temporal trends Ecosystems
240. Environmental sensitivity of cold water corals

Distribution • What is the current distribution of coral colonies in the North Sea? • Where are coral colonies located on the structures? • Do any colonies show evidence of exposure to drill cuttings? Monitoring & Environmental Recording • What hydrodynamic regime and levels of suspended particulate material are coral colonies exposed to? • Does the coral skeleton retain an archive of any past contamination? • Does skeletal growth vary over time and does this correlate with any past contamination? • How variable is the rate of coral growth and does this correlate with any environmental variables? Environmental Sensitivity • What effect does increased sediment load have on coral behaviour and physiology? • What effect does exposure to discharges (e.g. cuttings and produced water) have on coral behaviour and physiology? • Are such exposures realistic in the field?

Shelf seas Biological effects Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Oceanography Biodiversity Local pollution Ecosystems