Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 21 - 40 of 44 Next
21. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
22. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
23. Reducing the environmental impact of sea cage fish farming through the cultivation of seaweeds

Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.

Pathways Biological effects Fish Spatial trends Environmental management Contaminant transport Food webs Sediments Pesticides Temporal trends Ecosystems
24. The Effects of Turbidity on Marine Fishes

(a) To assemble and further develop an integrative methodology for in situ evaluation of the effects of turbidity and hypoxia on fish physiological and/or behavioural performance. (b) To determine experimentally the threshold values beyond which oxygen and turbidity levels are liable to alter fish physiological and/or behavioural performance. (c) To integrate the results obtained in a conceptual and predictive model. Main expected achievements: [1] establishment of a link between laboratory studies, studies in mesocosms and field studies, using the most advanced techniques for monitoring behaviour in various environmental conditions. [2] an understanding of the impact of water turbidity and oxygenation on three major components of the behavioural repertoire of fish: habitat selection, predator-prey interactions and schooling-aggregation. [3] Predictive ability for the effect of the environmental variables studied on ecologically relevant behaviour.

Shelf seas Biological effects Fish Environmental management Local pollution Food webs
25. Bacterial populations in the pelagic foodweb

Since nearly all microalgae are associated with bacteria and some harbor intracellular bacteria, it is most likely that these bacteria are involved in the development or termination of natural occurring plankton assemblages. The diversity and development of associated bacteria in microalgae cultures and during phytoplankton succession will be described by molecular analysis of the bacterial community structure and by phylogenetic analysis of involved microorganisms.

Shelf seas Biological effects Biodiversity
26. Investigations on the diversity and role of microphytobenthos in marine and freshwater food webs.

The main research goal of this project is focused on trophic interactions within microbenthic communities in aquatic systems. Grazer-microalgae interactions are investigated by conducting field and laboratory experiments in order to get a closer idea of the microphytobenthos community structure itself. Especially the role of morphological and physiological adaptations of microalgae in the presence of specific meio- and macrofaunal predators are of great interest. In addition to that we have devised a new benthic sensor for the quantitative and qualitative assessment in situ of diverse populations of microphytobenthos with high spatial and temporal resolution, enabling rapid evaluation of the community structure and distribution.

microphytobenthos Food webs Sediments chlorophyll fluorescence marine and freshwater sediments Ecosystems benthic algae
27. Strategies of enzymatic food utilization in marine invertebrates

Marine invertebrates show a large variety of feeding strategies. These comprise mechanisms for catching prey, the uptake of food and the utilisation of various food sources. Morphological and anatomical adaptations allow for the capture and the ingestion of the food. However, the organism's physiological properties are the key for the efficient digestion, the nutrient uptake and the assimilation of food. In response to environmental factors marine organisms have developed highly specialised biochemical adaptations which are particularly reflected by the immeasurable diversity of digestive enzymes. The detailed function of digestive enzymes in marine invertebrates and, particularly, their synergistic interplay is still poorly understood.The overall aim is to investigate the mechanisms of enzymatic food utilisation and enzyme induction in different taxa of marine invertebrates in response to environmental factors.

Shelf seas Biology Food webs
28. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
29. Helgoland Foodweb Project

The aim of this project is to investigate and understand those factors that play a role in the seasonal dynamics of different functional groups in the pelagic zone of coastal seas. We investigate the interactions between bacteria, phytoplankton, zooplankton and juvenile fish in order to assess the importance of biological interactions in the seasonal succession.

Biology Fish Plankton Bacteria Food webs Ecosystems
30. BIOFiltration & AQuaculture: an evaluation of hard substrate deployment performance with mariculture developments

1. To quantify the effectiveness of the biofilters in reducing the impacts of mariculture across Europe from both an economic and environmental perspective. 2. To determine the best design and placements of the biofilters, accounting for differences in geography, hydrology, nutrient input etc. between countries. 3. To examine the environmental and regulatory options governing the use of the biofilters at the end of their life-span and to provide detailed economic analyses of biofilter use compared to existing filtration methods.

Biological effects Fish Discharges Pollution sources Environmental management Contaminant transport Modelling Local pollution Food webs Sediments Diet Ecosystems
31. Atlantic Coral Ecosystem Study (ACES)

Objective 1: To map the structural and genetic variability, the framework-constructing potential, and the longevity of Deep Water Coral (DWC) ecosystems Objective 2: To assess hydrographic and other local physical forcing factors affecting Benthic Boundary Layer (BBL) sediment particle dynamics and POC supply in the vicinity of DWC ecosystems Objective 3: To describe the DWC ecosystem, its dynamics and functioning; investigate coral biology and behaviour and assess coral sensitivity to natural and anthropogenic stressors Objective 4: To assign a sensitivity code, identify the major conservation issues (and increase public awareness), and make recommendations for the sustainable use of the DWC ecosystem

Mapping Fish Environmental management Oceanography Biodiversity Corals Ecosystems
32. The ecological effects of sealice treatment agents

1. To determine the effects of each of several sealice treatment chemicals on macrofaunal assemblages 2. To determine the effects of each of several sealice treatment chemicals on zooplankton assemblages 3. To determine the effects of each of several sealice treatment chemicals on meiofaunal assemblages 4. To determine the effects of each of several sealice treatment chemicals on benthic diatom assemblages 5. To determine the effects of each of several sealice treatment chemicals on phytoplankton assemblages 6. To determine the effects of each of several sealice treatment chemicals on macroalgal and littoral assemblages 7. To measure the concentrations of each of several sea lice treatment chemicals in the environment post-treatment 8. To determine the significant correlations between ecosystem responses, time and therapeutant concentration to determine the proportion of the observed environmental variance attributal to the treatments against a background of responses due to other parameters such as waste organic materials and nutrients 9. To model the dispersion and or depostion of farm wastes including of each of several sea lice treatment chemicals in the marine environment post treatment and to incorporate terms relating to the toxicity of these chemicals to certain parts of the ecosystem (e.g. the macrofauna)

Biological effects Hydrography Mapping Fish Discharges Environmental management Contaminant transport Modelling Food webs Sediments Pesticides Diet Ecosystems
33. A new generation of biocides for control of fish lice in fish farms and biofilms on submerged materials

1. To develop a system of photoactive biocides for treating sea lice and biofouling (Further details in confidence)

Biological effects Mapping Fish Discharges Environmental management Contaminant transport Modelling Exposure Photosensitisation Local pollution Pesticides Photodynamic Marine mammals
34. Plankton responses to turbulence in a gradient of nutrient concentrations

This study will be part of the EU project NTAP. The overall objective of NTAP is to provide a unified conceptual framework for nutrient dynamics as modulated by the interaction of turbulence and plankton and to use this information to aid in implementing and modifying legislation on coastal water quality and management. Specifically, the objectives are a) to build a database on turbulence effects by gathering existing scattered data, b) to produce experimental data on key organisms, interactions and mass transfer rates, c) to develop a sensor for laboratory measurement of small-scale turbulence, and d) to produce a dynamical model at community level with exploratory and predictive capabilities. The present project will fit within Objective b), and will complement other NTAP experimental studies with cultures and natural communities that are being carried out in different European laboratories. The results derived from this project will also be valuable to test and calibrate the model developed within Objective d).

Biology Modelling Oceanography Food webs
35. Production, fate and effects of new DOM in a coastal ecosystem

Four-week mesocosm study with the following objectives: - to identify environmental and biotic factors in control of the production, chemistry and fate of exportable DOM in a coastal environment - to follow how DIN and DIP are transformed to DON and DOP and to measure their mineralisation - to analyse the optical properties of new DOM and to measure how radiation might change the optical properties - to validate current community-nutrient models for the marine system with particular emphasis on the mechanisms regulating shifts between carbon- and mineral nutrient limitation of bacterial growth rates, - to produce experimental data for further development and modification of the plankton community-nutrient model and – to incorporate DON and DOP into the present community-nutrient model.

Biology Modelling Geochemistry Food webs Ecosystems
36. Chemical and microbial ecology of boreal Demosponges from the Korsfjord

Many marine sponges produce and store pharmacologically-active metabolites. There is an ongoing discussion as to whether some of these compounds are produced by the sponge itself, or by associated bacteria which can account for more than 60% of the sponge biomass. Co-metabolic activity between sponge cells and sponge associated bacteria (SAB) has also been postulated. Anaerobic bacteria are occasionally found in sponge tissue, though their contribution to sponge metabolism is completely unknown. There is increasing interest in biotechnological production of sponge biomass for sustainable use of this promising marine resource. Our studies will contribute to a thorough understanding of sponge-bacteria interaction, and form the basis for the development of biotechnological methods. Most research has been done on tropical and subtropical sponges. Participants of this project will apply, for the first time, microbiological and chemical studies on boreal sponges. Objectives: • Description of chemical conditions in sponge tissue: occurrence of microniches • Cultivation of specific groups of aerobic and anaerobic sponge associated bacteria • Establishment of novel methods for co-cultivation of sponge cells and bacteria • Identification of new bacterial biomarkers • Elucidation of connections between spatial distribution of associated bacteria and metabolites with a focus on anoxic zones and anaerobic microbial communities (especially sulfate reducing bacteria and Archaea) • Investigation of chemical communication and other interactions (´bacterial farming´) between sponge cells and bacteria as well as sponges and their environment

Biology Biodiversity
37. Lake Myvatn and the River Laxá

The aim is to monitor the Lake Myvatn and the river Laxá ecosystem for (1) detecting trends, (2) detecting background variability in the system, (3) assess the efficiency of management measures, (4) observe perturbations in order to generate hypotheses about causal relationships.

Biological effects Biology Populations Catchment studies Fish Spatial trends Environmental management Mining Waterbirds Modelling Biodiversity Arctic Local pollution Food webs Sediments Diet Temporal trends Ecosystems
38. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals
39. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton
40. Effects of persistent organic pollutants on polar bears in Svalbard

The study covers many areas of ecotoxicology research on polar bears. Monitoring of POP levels and studies of effects on endocrine disruption, immune system, reproduction, and demography are all parts of the study.

Biological effects Biology Populations Organochlorines PCBs Heavy metals Spatial trends Climate change Polar bear Persistent organic pollutants (POPs) Reproduction Pesticides Temporal trends Marine mammals