The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 121 - 139 of 139
121. Effects of persistent organic pollutants on polar bears in Svalbard

The study covers many areas of ecotoxicology research on polar bears. Monitoring of POP levels and studies of effects on endocrine disruption, immune system, reproduction, and demography are all parts of the study.

Biological effects Biology Populations Organochlorines PCBs Heavy metals Spatial trends Climate change Polar bear Persistent organic pollutants (POPs) Reproduction Pesticides Temporal trends Marine mammals
122. Environmental Assessment in van Mijenfjorden, Svalbard

The project aims to describe the environmental status of marine sediments in van Mijenfjorden. This to provide baseline data of contaminants and biodiversity, as well as for monitoring of eventual contamination from industrial activities (coal mining).

Biological effects Glaciers Biology Populations Discharges Spatial trends Environmental management Mining Oceanography Biodiversity Arctic Sediments Temporal trends Ecosystems
123. Environmental Protection from Ionising Contaminants in the Arctic (EPIC)

(1) Collate information relating to the environmental transfer and fate of selected radionuclides through aquatic and terrestrial ecosystems in the Arctic. (2) Identify reference Arctic biota that can be used to evaluate potential dose rates to biota in different terrestrial, freshwater and marine environments (3) Model the uptake of a suite of radionuclides, both natural and anthropogenic to reference Arctic biota (4) Develop a reference set of dose models for reference Arctic biota (5) Compile data on dose-effects relationships and assessments of potential radiological consequences for reference Arctic biota (6) Integrate assessments of environmental impact from radionuclides with those for other contaminants.

Pathways Biological effects Radioactivity Radionuclides Modelling Arctic
124. Benthic fauna in the Kongsfjorden, Svalbard

Investigation of benthic faunal communities for: taxon distribution/ biodiversity mapping; examination of effects of glacial and physical disturbance on community structure; relation between faunal structure and sediment contaminants.

Biological effects Glaciers Biology Mapping Physical disturbance Spatial trends Pollution sources Environmental management Climate change Biodiversity Arctic Sediments Temporal trends Ecosystems
125. Environmental assessment of the Isfjorden complex, Svalbard

The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.

Biological effects Sources Pollution sources Contaminant transport Mining Primary recipient Radionuclides Modelling Dioxins/furans Sediments Pesticides Waste secondary recipient Biology Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Discharges Spatial trends Environmental management Petroleum hydrocarbons Biodiversity Arctic Persistent organic pollutants (POPs) Local pollution Data management Temporal trends Ecosystems
126. Effects of metals and POPs on marine fish species

To clarify whether metals and/or POPs affect marine fish species - Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa)

Biological effects PAH-metabolites Organochlorines Pleuronectes platessa Heavy metals Fish EROD PAHs Long-range transport Gadus morhua ALA-D metallothionein
127. Metal effects in Arctic seals

To clarify whether effects of metals (Cd, Hg) affects biochemical markers (MT) in seal kidneys

Biological effects kidney Cd seal metallothionein Marine mammals
128. Monitoring epiphytic lichens on birch (Betula pubescens)

The aim of this project is to monitor epiphytic lichen communities in a way that enables us to separate between natural variation and the effects of acidification and long range transported air pollutants.

Biological effects Long-range transport Acidification Epiphytic lichens Biodiversity Temporal trends Birch forests
129. Endocrine disruption in arctic marine mammals

Assess the effects of POP mixtures present in the food on the endocrine system of marine mammals. Effects of these mixtures on steroid synthesis in adrenals and gonads will be studied in vitro. Further, hormone mimicking effects of contaminant mixtures will be studied. Contaminant receptor binding and responses of the contaminant-receptor complex are studied using estrogen/androgen receptor binding assays in combination with reporte gene assays.

Biological effects Arctic Persistent organic pollutants (POPs) Marine mammals
130. The P450 enzyme system of the Arctic charr as a biomarker of POP contamination in Arctic aquatic environments

Validate the hepatic P450 enzyme system as a biomarker of levels and effects of POPs in Arctic, aquatic environments, using the anadromous (sea-migratory) Arctic charr as an indicator species.

Biological effects Biomarker Organochlorines PCBs Fish PAHs Environmental management Petroleum hydrocarbons Exposure Persistent organic pollutants (POPs) Oil and Gas
131. The influence of body lipid status on PCB toxicokinetics in the anadromous Arctic charr (Salvelinus alpinus)

The objective is to study the relationship between natural seasonal variations in body lipid status of sea migrating Arctic charr and disposition (e.g. tissue distribution)of PCB, particularly in relation to the toxical potential of a certain body burden of PCB.

Biological effects Toxicokinetics Organochlorines PCBs Fish
132. Xenobiotic impact on Arctic charr: Nutritional modulation and physiological consequences

The objectives are to test the hypothesis that the tissue re-distribution of PCB are linked to the metabolic status of the Arctic charr and that the tissue re-distribution of PCB associated with fasting will decrease the overall performance characeristics of the Arctic charr.

Biological effects Organochlorines PCBs Fish Exposure Persistent organic pollutants (POPs)
133. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems
134. Mercury in Salluit : phase 2 : Effects of mercury on oxydative status and sensorimotor functions

Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.

Biological effects Populations Heavy metals Fish Indigenous people Exposure Diet Temporal trends Human health Human intake
135. Yukon Traditional Foods Monitoring Program

Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.

Biological effects Pollution sources Contaminant transport Caribou Dioxins/furans Pesticides Human intake Pathways Biology Populations Organochlorines PCBs Heavy metals Fish Indigenous people PAHs Long-range transport Spatial trends Petroleum hydrocarbons Terrestrial mammals Persistent organic pollutants (POPs) Local pollution Food webs Data management Diet Temporal trends Human health Ecosystems
136. Arctic Research Initiative

Research in the NOAA OAR Arctic Research Office Activities Supported by Base Funds in FY2000 Joint IARC/CIFAR Research In FY2000, the NOAA Arctic Research Office developed a partnership with the National Science Foundation and the International Arctic Research Center at the University of Alaska to conduct a research program focused on climate variability and on persistent contaminants in the Arctic. This partnership resulted from a unique confluence of mutual interest and unexpected funding that NSF chose to obligate through NOAA because of NOAA's on-going joint programs at the University of Alaska. NSF anticipates establishing its own institutional arrangement with the University of Alaska in the future. The research initiated in FY2000 focused on 5 climate themes and 1 contaminant theme, with several specific topics associated with each: A. detection of contemporary climate change in the Arctic changes in sea ice role of shallow tundra lakes in climate comparison of Arctic warming in the 1920s and the present variability in the polar atmosphere dynamics of the Arctic Oscillation downscaling model output for Arctic change detection long-term climate trends in northern Alaska and adjacent Seas B. Arctic paleoclimate reconstructions drilling in the Bering land bridge Arctic treeline investigation Mt. Logan ice core test models to simulate millennial-scale variability C. Atmosphere-ice-land-ocean interactions and feedbacks impact of Arctic sea ice variability on the atmosphere model-based study of aerosol intrusions into the Arctic international intercomparison of Arctic regional climate models reconstruction of Arctic ocean circulation intercomparison of Arctic ocean models Arctic freshwater budget variation in the Arctic vortex role of Arctic ocean in climate variability Arctic Oscillation and variability of the upper ocean D. Arctic atmospheric chemistry assessment of UV variability in the Arctic Arctic UV, aerosol, and ozone aerosols in the Finnish Arctic inhomogeneities of the Arctic atmosphere aerosol-cloud interactions and feedbacks Arctic haze variability E. Impacts and consequences of global climate change on biota and ecosystems in the Arctic linking optical signals to functional changes in Arctic ecosystems marine ecosystem response to Arctic climate changes faunal succession in high Arctic ecosystems long-term biophysical observations in the Bering Sea cryoturbation-ecosystem interactions predicting carbon dioxide flux from soil organic matter F. Contaminant Sources, Transport, Pathways, Impacts using apex marine predators to monitor climate and contamination change trends in atmospheric deposition of contaminants assessment of data on persistent organic pollutants in the Arctic paleorecords of atmospheric deposition derived from peat bog cores toxicological effects of bio-accumulated pollutants Under these themes, 45 research projects were initiated that will continue into 2001. The support for these projects totals $8 million over two years, of which only $1 million comes from NOAA. This tremendous leverage cannot be expected to continue; however the Arctic Research Office will continue its interactions with the International Arctic Research Center and seek collaborative efforts whenever possible. Arctic Climate Impact Assessment The United States has agreed to lead the other seven Arctic countries to undertake an Arctic Climate Impact Assessment (ACIA). This assessment will culminate in 2002 with a peer-reviewed report on the state of knowledge of climate variability and change in the Arctic, a set of possible climate change scenarios, and an analysis of the impacts on ecosystems, infrastructure, and socio-economic systems that might result from the various climate change scenarios. NOAA and NSF will provide support in FY2000, with the ARO providing early support and leadership for planning the ACIA. Scientific Planning and Diversity The Arctic Research Office will support scientific planning, information dissemination, and NOAA's diversity goals through workshops and other activities. An international conference on Arctic Pollution, Biomarkers, and Human Health will be held in May, 2000. The conference is being organized by the National Institutes of Environmental Health Sciences, with co-sponsorship by NSF and the Arctic Research Office. Research planning activities are being supported that will lead to future program activities related to climate variability and change and to impacts from contamination of the Arctic. The Study of Environmental Arctic Change (SEARCH) is being planned on an interagency basis, with the Arctic Research Office providing input for NOAA. An Alaskan Contaminants Program (ACP) is under development, with leadership coming from organizations within the state of Alaska. To accelerate the flow of minorities into scientific fields of interest to NOAA, the Arctic Research Office will undertake an effort in conjunction with Alaskan Native organizations that will encourage young Native students to obtain degrees in scientific fields. Outlook to FY2001 The Arctic Research Office will use resources available on FY2001 to begin implementation of the interagency Arctic climate science plan "Study of Environmental Arctic Change" (SEARCH). The NOAA/ARO role in SEARCH will involve long-term observations of the ocean, atmosphere and cryosphere, improved computer-based modeling of climate with an emphasis on the Arctic, and diagnostic analysis and assessment of climate data and information from the Arctic. Funds available in FY2001 will permit planning and limited prototype observation and modeling activities. The role of the NOAA/ARO in the Alaska Contaminants Program will become during the last half of FY2000, and some initial activities may be undertaken in FY2001. In addition, the NOAA/ARO will continue its partial sponsorship of the Arctic Climate Impact Assessment, being pursued on an international basis with the involvement of all 8 Arctic countries. It is anticipated that the ARO will provide support to experts to produce portions of the draft state-of-knowledge report during FY2001 and conduct one or more review workshops.

Biological effects Atmospheric processes Climate variability Contaminant transport Climate change Arctic Persistent organic pollutants (POPs) SEARCH
137. Lead Contamination of Greenland Birds

In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.

Biological effects Sources Heavy metals Indigenous people Exposure Local pollution Seabirds Diet Human health Human intake
138. Effects and Trends of POPs on Polar Bears

LONG TERM: Determine the effects, at the individual and population level, of persistent organic pollutants (POPs) and their metabolites in the polar bear; determine trend of POPs in the Arctic marine environment using polar bear tissues as a biomonitor. SHORT TERM: a. Determine 10-year temporal trends of POPs in the Hudson Bay Sub-Arctic Ecosystem from 1990-1989 by analysis of archived polar bear biopsy samples, including changes in enantiomeric composition of -HCH and chlordane compounds and ratio of -HCH/-HCH (cross-referenced to separate proposal on HCHs). b. Determine if there is selective tissue distribution of the enantiomers of chiral contaminants in polar bears, which may influence target organ toxicity, by analysis of archived polar bear samples. c. Determine the endocrine disrupting effect of POPs on testosterone and PCB metabolite profiles by in vitro metabolism studies using polar bear liver microsomes. d. In collaboration with CWS P&N Region, the Norwegian Polar Institute and the Norwegian Veterinary Institute, determine the immunotoxic effects of PCBs and other organochlorines in polar bears throughout a gradient of exposure (Hudson Bay, low; Svalbard, high). e. Determine the effects of hydroxy-PCBs on circulating thyroid hormone and vitamin A concentrations.

Biological effects Organochlorines PCBs Long-range transport Spatial trends Pollution sources Terrestrial mammals Polar bear Exposure Arctic Persistent organic pollutants (POPs) Dioxins/furans Temporal trends Marine mammals
139. Contaminants in arctic sea ducks

To examine concentrations and biological effects of selected trace elements in king and common eiders from various locations in the Canadian arctic.

Biological effects endocrine disruption Heavy metals immune function king eiders Arctic Seabirds common eiders sea ducks